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A context dependent role for
DNAmethylation in bivalves
Mackenzie Gavery and Steven RobertsAQ2

Abstract
5 The function of DNA methylation in species such as bivalves where the limited amount of DNA methylation is

predominantly found in gene bodies remains unclear. An emerging possible explanation is that the role of gene
body DNAmethylation is dependent on gene function, a potential phenomenon that has arisen from selective pres-
sure on lineage-specific life history traits. In genes contributing to phenotypes that benefit from increased plasticity,
the absence of DNA methylation could contribute to stochastic transcriptional opportunities and increased trans-

10 posable element activity. In genes where regulated control of activity is essential, DNA methylation may also play a
role in targeted, predictable genome regulation. Here, we review the current knowledge concerning DNAmethyla-
tion in bivalves and explore the putative role of DNA methylation in both an evolutionary and ecological context.

Keywords: oysters; bivalves; methylation; epigenetics; plasticity; invertebrates

15 The variability observed in DNA methylation land-

scapes and functionality in invertebrates is fascinating

from both a molecular and evolutionary perspective.

At the molecular level we are still uncovering the

many nuances associated with the functional mech-
20 anism of methylation, which in turn should eventu-

ally provide insight into the evolution of this

prevalent epigenetic mark. Although we continue

to understand more about DNA methylation in

invertebrates, relatively limited information exists
25 concerning the role of DNA methylation in mol-

luscs. The phylum Mollusca is incredibly diverse

and consists of more than 100 000 species. The

class Bivalvia is a particularly relevant group as it

includes species of significant ecological (i.e. sentinel
30 species, ecosystem engineers) and commercial

(i.e. fisheries, aquaculture) importance. Here, we

review the current knowledge concerning DNA

methylation in bivalves and explore the putative

role of DNA methylation in both an evolutionary
35 and ecological context.

The presence of DNA methylation has been con-

firmed in several bivalves including the Japanese scal-

lop, Chlamys farreri [1], the salt water clam, Donax

trunculus [2] and the Pacific oyster, Crassostrea
40gigas [3]. Using high-throughput sequencing of bisul-

fite treated DNA (BS-Seq), it was recently deter-

mined 15% of CpG dinucleotides (1.8% of total

cytosines) in the C. gigas genome are methylated

[4], similar to the 2% total methylation for a gastro-
45pod (snail) as measured by LC-MS [5]. Methylation

levels reported for the Pacific oyster were character-

ized in adult gill tissue but it is important to note that

methylation levels are likely to vary among life

history stages and among tissue types. This point is
50clearly indicated by Riviere et al. [6] where they used

an ELISA to quantify relative DNA methylation in

developing oysters. Although the ELISA approach

does not provide comparable values with respect

to the extent of absolute DNA methylation levels,
55methylation almost doubled during the morula and

blastula stage as compared to oocyte and then

decreased again during later developmental stages [6].

DNA methylation in bivalves appears to be pre-

dominantly found in gene bodies [4]. The observa-
60tion that gene bodies are the primary methylated

genomic feature is consistent with what has been

described in other invertebrates [7–9]. There is
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increasing evidence that this form of methylation is

the ancestral pattern [10] as gene body methylation is

observed not only in invertebrates and vertebrate

species [11] but also in plants [12]. The function of
5 DNA methylation in species such as bivalves where

the limited amount of DNA methylation is predom-

inantly found in gene bodies remains unclear. One

possible explanation that is emerging is that the role

of gene body DNA methylation is dependent on the
10 gene function, a potential phenomenon that has

arisen from selective pressure on lineage-specific

life history traits. In genes whose function may bene-

fit from increased variability (e.g. immune response),

the absence of DNA methylation contributes to sto-
15 chastic ‘transcriptional opportunities’, whereas genes

considered core to survival (e.g. housekeeping genes)

are protected from this type of transcriptional vari-

ation by the presence of DNA methylation [13]. This

theory of beneficial stochastic variation as a result of
20 hypomethylation could also be extended to other

regions of the genome such as transposable elements

(TEs). Further, and not mutually exclusively, DNA

methylation may also play a role in a directed and

targeted genome regulation. It should also be noted
25 that an alternative explanation for intragenic DNA

methylation patterns is that it is solely a byproduct of

having an open and accessible chromatin state [14].

Here, we will explore studies of both stochastic and

targeted methylation functions that are emerging as
30 potential roles for DNA methylation in bivalves.

STOCHASTIC VARIATION
A classical explanation of gene body methylation is

that it reduces transcriptional noise by preventing

initiation of transcription outside of traditional tran-
35 scription start sites (TSSs) [15]. There are data to

support this explanation in mammals [16], though

to our knowledge, this idea has not been tested

directly in an invertebrate. The implication of this

explanation is that unmethylated regions would
40 be inherently ‘noisier’. In other words, a variety of

transcriptional products are produced. It has been

proposed that this type of transcriptional noise

could result in more diverse transcriptional opportu-

nities [13], which may be beneficial for organisms
45 such as marine bivalves that live in unpredictable

and variable nearshore habitats, and as a result,

have unpredictable and variable reproduction and

recruitment success. As such, oysters may use epigen-

etic systems to maintain the genomic and phenotypic

50diversity necessary for a species that undergoes

this type of ‘sweepstakes reproduction’ [17] where

chance events dictate which individuals are successful

each spawning season. The lack of methylation, by

allowing more transcriptional opportunities in genes
55functionally associated with environmental response,

may contribute to phenotypic plasticity by providing

access for transcription factors to bind to alternative

TSSs, facilitating exon skipping or other alternative

splicing mechanisms, and/or through unknown
60mechanisms supporting increased sequencing vari-

ation [13] (Figure 1). Although direct evidence is

currently lacking to support the idea that hypo-

methylation is correlated with increased transcrip-

tional opportunities in bivalves, recent evidence
65is concordant with this possibility in insects.

Specifically, in the honeybee Apis mellifera, knock-

down of global methylation was associated with

increased transcriptional opportunities in the form

of the generation of splice variants [18].
70Consistent with the theory that limited methyla-

tion allows for a variety of transcriptional opportu-

nities is the possibility that TE mobilization may be

facilitated by the lack of repressive DNA methylation

in bivalves (Figure 1). In vertebrates and some plants,

Figure 1: Stochastic regulation. A simplified AQ9model
of stochastic transcriptional opportunities based on
limited DNA methylation. Open and closed circles rep-
resent unmethylated and methylated CpG, respectively.
Thick boxes represent individual exons of a single gene
and thin boxes below represent transcriptional out-
comes. In this theoretical model predominantly methy-
lated genes (left) produce consistent transcriptional
outcomes, whereas unmethylated genes (right) generate
transcriptional ‘noise’ in the form of splice variants.
In addition, unmethylated TEs may actively insert into
the genome where they could produce transcriptional
variation in the form of truncated transcripts or splice
variants AQ10.
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extensive methylation of TEs suppresses their activity

in the genome [19]. In invertebrates, species such as

A. mellifera show very little methylation in TEs [9].

Likewise, in oysters there appears to be no prepon-
5 derance of TE methylation [4]. The finding that TEs

are not methylated in oysters is consistent with the

theory outlined above regarding the ability of a

population to present a variety of phenotypes in

response to environment change (i.e. phenotypic
10 plasticity). Thus, the absence of TE methylation

may indicate an evolutionary pressure to retain the

variation generated by TE mobilization to maintain

genetic diversity in a species inhabiting heteroge-

neous environments [20].
15 It is worth considering the relationships between

DNA methylation, TEs and transcriptional/genomic

variation in light of recent evidence coming from

studies of DNA methylation and stress response in

plants. For example, it has recently been reported
20 that DNA methylation is involved in regulating the

defense response of Arabidopsis thaliana to the patho-

gen Pseudomonas syringae [21]. Using mutant strains

of A. thaliana defective in the various types of DNA

methylation, Dowen et al. were able to show
25 that genome-wide hypomethylation increased plant

resistance to the pathogen and was associated with

mobilization of TEs and dysregulation of several

immune response genes. This was further examined

by Yu et al. [22] where Arabidopsis subject to bacterial
30 challenge exhibited globally reduced DNA methyla-

tion. This resulting hypomethylation was associated

with the reactivation of previously silent TEs. The

authors conclude that the defense response in

A. thaliana is negatively regulated by DNA methyla-
35 tion, and propose that hypomethylation is a part of

the plant immune response that acts by priming tran-

scriptional activation of defense genes that are linked

to TEs. Considering these studies as a whole, it is

interesting that oysters, like plants, which are immo-
40 bile and face intense selection at early life stages, may

benefit from these ‘noisy’ or ‘unstable’ genomes. It is

important to note that the lack of DNA methylation

does not preclude TE silencing, which can be

repressed by a variety of epigenetic mechanisms
45 (reviewed [23]). Future investigation in bivalves

should focus on characterizing these additional epi-

genetic marks (e.g. histone modification, noncoding

RNAs) to determine what roles they might play

in stabilizing bivalve genomes, and examining the
50 relationship between TE activity and environmental

stress.

TARGETEDREGULATION
A second explanation regarding a role for DNA

methylation as it pertains to gene body methylation
55in bivalves is that the epigenetic mark regulates tran-

scriptional activity in a targeted, predictable manner

(Figure 2). Evidence is emerging linking gene body

methylation to a potential function in regulating

alternative splicing [24,25]. The production of both
60constitutive and alternative isoforms by alternative

splicing is important for developmental processes

and tissue-specific functions. In oysters, alterna-

tive splicing regulates the generation of both tissue-

specific [26] and stress activated [27] isoforms of
65genes. The relationship between methylation and

splicing has been examined in a number of studies

performed in A.mellifera [9,18,28]. Mechanistically, it

has been proposed that exon-specific DNA methy-

lation may impact exon-skipping through inter-
70actions with DNA-binding proteins (CTCF) and

subsequent effects on RNA polymerase II pausing

[25]. Interestingly, although intronic methylation

is rare in A. mellifera, Foret et al. [28] identified a

relationship between differential methylation in an
75intron upstream of a differentially expressed cassette

exon of the ALK gene. Specifically, they reported

that low methylation was correlated with high inclu-

sion of the upstream exon [28].

Figure 2: Targeted regulation. A simplified model
of targeted regulation of gene products via dynamic
methylation/demethylation in response to extrinsic or
intrinsic signals. Open and closed circles represent
unmethylated and methylated CpG, respectively. Thick
boxes represent individual exons of a single gene and
thin boxes below represent transcriptional outcomes.
In the top example, changes in methylation status in
proximity to transcription initiation site may inhibit or
promote transcription. In the lower example a change
in methylation status in the gene body produces a tran-
scriptional variant. Potential initiators of these methyla-
tion changes could be cues from the environment or
associated with developmental processes.

A context dependent role for DNA methylation
AQ1
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Additional support for a targeted role in regulat-

ing transcription in bivalves is the recent work of

Riviere etal. [6]. Investigators examined the relation-

ship between expression and methylation in homeo-
5 box (hox) genes, a family of genes that are critical

developmental genes. Riviere et al. [6] observed an

inverse relationship with gene body methylation and

expression, and hypothesized that the apparent sup-

pression of hox expression by DNA methylation was
10 due to a ‘CpG island-like’ repression by DNA

methylation proximal to the TSS in these genes.

Results were obtained using methylated DNA

immunoprecipitation qPCR, so the context of the

region investigated was known. When possible (6 of
15 10 genes) the region examined was in the first exon

or 50 UTR. The trend is similar to repression in

proximal promoter/first exon repression as seen in

mammals. Riviere etal. [6] not only provide evidence

of active regulation of transcription via gene body
20 methylation, but their work also suggests mechanism

similar to the conventional repressive nature of

promoter methylation in vertebrates. While little re-

search exists on the relationship of promoter methy-

lation and expression in invertebrates, there is at least
25 one report in molluscs. In Aplysia, Rajasethupathy

et al. [29] found that serotonin exposure induced

an increase in methylation in the promoter of the

CREB2 gene, which is also associated with the

downregulation of CREB2 mRNA in neurons.
30 In general, CpG island containing promoter methy-

lation is not typical in invertebrates [8]; however, it is

possible that depending on the context of the

methylation (i.e. whether gene body or promoter

methylation) it may play either a repressive or ex-
35 pressive role. This is known as the DNA methylation

paradox [30] and has been observed in a wide range

of taxa.

FUTUREDIRECTION
Continued endeavors exploring the role of DNA

40 methylation in invertebrates will certainly shed

light on general similarities and lineage specific

nuances. There remains a multitude of research ques-

tions and phenomena that need attention; among

them are some of the ideas presented here. The
45 only direct evidence available relating DNA methy-

lation and expression in bivalves focuses either on a

single family of genes (i.e. hox) [6] or genome-wide

analysis of pooled individuals [4]. To ultimately gain

a better understanding of this, future studies are

50needed to characterize genome wide methylation

and gene expression on individuals with consider-

ation toward cell type, developmental stage and

environmental condition. A draft genome of

C. gigas is now available [31], and new bivalve gen-
55omic resources are increasingly available to the

scientific community, allowing us to characterize sto-

chastic versus targeted roles for DNA methylation in

bivalves. Future investigations into other epigenetic

phenomena, including histone modifications and
60non-coding RNAs, will provide a fuller picture

regarding genome regulation in bivalves.

Another important question is the extent that

the environment influences DNA methylation in

bivalves. In other species it has been clearly shown
65that DNA methylation can be influenced by the

environment [32–34]. Interestingly, one of the best

examples of this phenomenon comes from findings

in an invertebrate. In honeybees, larvae fed royal

jelly become queens, which are phenotypically dis-
70tinct from workers. It has been shown that DNA

methylation serves as an intermediary between this

environmental signal (nutrition) and the develop-

mental outcome into a queen or a worker [35].

It is a likely generality that the environment influ-
75ences DNA methylation in bivalves, though pos-

sibly in a different fashion, in light of the ideas

presented here with respect to the stochastic nature

of new transcriptional opportunities and local

adaptation.
80It remains to be determined to what extent

transgenerational epigenetic inheritance occurs in

invertebrate taxa. In mammals, evidence exists of

transgenerational inheritance of DNA methylation

patterns and phenotypes in response to certain xeno-
85biotics [36,37]. Transgenerational inheritance of

DNA methylation patterns associated with pheno-

types (epialleles) have also been observed in plants

[38,39], including evidence that environmental stress

induces heritable changes [40]. Transgenerational
90epigenetic inheritance has not been investigated in

bivalves, but one particularly intriguing possibility to

explore is the role of DNA methylation in protecting

future generations through an acquired stress re-

sponse. Bivalves are generally sessile and do not dir-
95ectly interact with their offspring. One way a bivalve

could ‘inform’ their offspring about recent environ-

mental conditions is through the transmission of

epigenetic marks such as DNA methylation.

If epigenetic marks are heritable, they may play
100a role in evolutionary processes. To address the
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question of heritability, we need to compare levels of

existing epigenetic variation in natural populations

with genetic variation. This indeed could be a

game changer, as epigenetic variation may offer a
5 new platform for selection. There has been some

work done in vertebrates and plants [41–43],

though information in invertebrates is limited.

Researchers have started to address this fact in

oyster aquaculture settings in response to mass selec-
10 tion protocols. Jiang et al. [44] used a methylation-

sensitive amplified polymorphism methodology

to identify epigenetic variation between a base

population and a fourth generation mass selection

population. They also used AFLP to look at genetic
15 variation. Jiang et al. [44] found genetic variation

with no epigenetic variation over all, though specific

differences were observed. The authors observed a

correlation between epigenetic and genetic variation.

Despite the limitations of this study in using a rela-
20 tively small number of random markers, it is the first

study comparing epigenetic and genetic variation in

bivalves and illuminates an interesting direction for

future work.

The relationship of heritable transmission of
25 genome patterns and epigenetic resetting is another

research avenue that should be explored. In mam-

malian systems epigenetic resetting, a clearing and

re-establishment of DNA methylation with each

generation, is thought to be necessary to induce
30 pluripotency of cells (reviewed [45]). Nevertheless,

there are certain loci (e.g. imprinted genes) where

the clearing of epigenetic marks is incomplete result-

ing in meiotic inheritance of DNA methylation

patterns. This type of transgenerational inheritance
35 has been studied in plants and mammals, but to

our knowledge has yet to be addressed in inverte-

brates. As mentioned earlier, oysters show temporal

changes in the total amount of DNA methylation

during embryonic development, with lower methy-
40 lation in the 2–4 cell stages and increasing in morula

and blastula [6]. This observation may be indicative

of an epigenetic resetting event. However, charac-

terizing epigenetic changes at finer temporal time

scales are needed.
45 Exploring these questions of epigenetic flexibility

to environmental cues, natural variation, heritability,

as well as the possibility of epigenetic resetting in

bivalves will inform the direction of much larger

research questions. While we are gaining a better
50 understanding of invertebrate epigenetics, we cer-

tainly have a lot more to learn, which could

considerably change our comprehension of organis-

mal and ecosystem responses to environmental

change.
55

Key points

� DNA methylation is found throughout the genome and is pre-
dominant in gene bodies in bivalves.

� The role of gene body DNAmethylation could be dependent on
60the gene function and serve to both reduce stochastic transcrip-

tional noise as well as regulate activity in a targetedmanner.
� Several important research questions remain unanswered with

respect to DNAmethylation in bivalves related to environmen-
tal influence, relationship with genetic variation, and transge-

65nerational inheritance.
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