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We describe an open source, portable, JavaScript-based genome browser, JBrowse, that can be used to navigate genome
annotations over the web. JBrowse helps preserve the user’s sense of location by avoiding discontinuous transitions,
instead offering smoothly animated panning, zooming, navigation, and track selection. Unlike most existing genome
browsers, where the genome is rendered into images on the webserver and the role of the client is restricted to displaying
those images, JBrowse distributes work between the server and client and therefore uses significantly less server overhead
than previous genome browsers. We report benchmark results empirically comparing server- and client-side rendering
strategies, review the architecture and design considerations of JBrowse, and describe a simple wiki plug-in that allows
users to upload and share annotation tracks.

[The JBrowse source code (freely licensed), live demonstrations, mailing list, documentation, bug-tracking, and virtual
machine images are available at http://jbrowse.org/.]

In a genome, spatial relationships often indicate functional rela-

tionships. A genome browser (Stein et al. 2002; Kent et al. 2003;

Stalker et al. 2004) visually conveys the spatial relationships be-

tween different pieces of genomic data, helping users form hy-

potheses about their functional relationships. Current mainstream

web-based genome browsers help users understand the genomic

data within a given region, but hinder the further development of

that understanding by requiring users to navigate to other regions

page-by-page. These discontinuous page transitions impair the

user’s intuitive understanding of which genomic locus they are

viewing and how the displayed data points relate to one another.

A genome browser also allows a researcher to visually com-

pare and correlate information from several different sources

(Cline and Kent 2009); as such, it is a tool for evaluating multiple

forms of evidence, looking at interesting biological cases, linking

out to more detailed sources of information, such as genomic

databases, communicating information to collaborators visually,

preparing publication figures, and more. The availability of many

genome browsers via the web allows scores of researchers to im-

mediately dive into the data without the overhead of installing,

configuring, or maintaining software, as well as provides the ability

to link with a myriad of other web-based sources of information.

Most current web-based genome browsers are implemented

using the Common Gateway Interface (CGI) protocol, which

provides a mechanism for a web server to generate a web page to

send to the user. For example, GBrowse (Stein et al. 2002), a ge-

nome browser commonly used for model organism databases,

consists of a set of Perl scripts and libraries stationed on the server

side. These scripts query a server-side database of genomic features,

render the HTML and graphics files needed to display a region of

the genome, and transmit them to the browser along with HTML

form-based navigation controls. To scroll the displayed region, the

user presses the ‘‘pan left’’ button or other navigation control;

the browser transmits the changed coordinates to the server, and

the process repeats itself. This use of CGI imposes a page-based

model of viewing the data; that is, every action (such as moving to

a different part of a chromosome or changing how the data are

displayed) reloads the entire genome browser page, which incurs

a delay and makes the user experience ‘‘choppy’’ (for example, the

vertical scroll position and other state information is lost). This

manner of progressing through a series of static pages results in

disruption of user attention. Since navigating through large vol-

umes of information requires these actions to be done frequently,

the disruptions add up.

Another common implementation drawback (not directly

having to do with CGI) is that the server generally does most of the

work involved in showing genomic data to the user. Typically,

a program running on the server has to query a database for ge-

nomic information in the region the user is viewing, and then

render a static pictorial representation of that region, which the

web browser passively displays. In this type of system, the server

incurs the majority of the computational expense involved, which

increases with the number of users and with the amount of ge-

nomic data. As that computational expense increases, so does the

amount of time the user has to wait for each new page, unless the

server computational resources (and therefore maintenance costs)

are also increased.

Both of these issues are addressed by a class of web applica-

tions known as rich Internet applications. Rich Internet applica-

tions depart from page-based models by decoupling interactions

with the user from interactions with the server. This decoupling

enables the user to interact with the application without having

to wait for the server; communication between the web browser

and the server takes place asynchronously in the background.

This functionality is generally implemented by techniques such

as client-side scripting (using JavaScript and related ‘‘dynamic

HTML’’ technologies) and structured data representation (using

file formats like XML and JSON). These techniques, often collec-

tively called Ajax (Asynchronous JavaScript and XML; http://www.

adaptivepath.com/ideas/essays/archives/000385.php), work coop-

eratively with the CGI-based technologies on which page-based

web applications rely. Such approaches generally have the effect of

shifting overhead from the server to the client (the machine that

the web browser is running on).
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One of the earliest exemplars of Ajax applications was Google

Maps (http://maps.google.com/), which broke from previous car-

tographic websites in responding to user drag requests with live

panning of the map viewpoint. Google Maps achieves this by pre-

rendering an image of the entire world map (or, at least, relevant

parts of it) at multiple zoom levels, breaking this image into tiles of

256 3 256 pixels, and having a JavaScript client, which runs in the

user’s web browser, download only those tiles visible in the current

view. The JavaScript client responds to click and drag events by

dynamically changing the positional offset of these tiles, fetching

new tile images when necessary ( JavaScript provides for manipu-

lation of the Document Object Model [http://www.w3.org/DOM/],

the primary data structure by which a web browser represents an

HTML page). This creates the effect of panning smoothly over

a large pre-rendered image.

It is natural to consider extending the Google Maps experi-

ence to the genome browser. Indeed, two recent papers have de-

scribed the Ajax browsers XMap (Yates et al. 2008) and Genome

Projector (Arakawa et al. 2009) that were built using the Google

Maps API. XMap and Genome Projector follow the Google Maps

approach of pre-rendering: each track (a collection of biological

features of the same type, e.g., ‘‘genes’’ or ‘‘spliced ESTs’’) is ren-

dered and broken up into tiles, which are served up on demand

depending on the region of the genome the user is viewing.

However, this approach may be impractical for viewing eukaryotic

genomes at a level of detail that shows individual DNA bases, due

to the space required to store pre-rendered image tiles on the server.

Genome Projector only demonstrates bacterial genomes, and

neither browser demonstrates the ability to view individual bases;

the highest zoom level in the XMap online demonstration is

roughly 250-fold lower than the default per-base zoom level in

GBrowse (Stein et al. 2002). The problems with pre-rendering

would be compounded if users could upload custom tracks, a fea-

ture that exists in some genome browsers (Stein et al. 2002; Kent

et al. 2003); supporting even a small number of users could require

an orders-of-magnitude increase in the server storage space needed

to hold graphics for their pre-rendered tracks.

Several recently developed genome browsers, the NCBI Se-

quence Viewer (http://www.ncbi.nlm.nih.gov/projects/sviewer),

Anno-J (Lister et al. 2008), and version 2 of GBrowse, avoid the

costs of pre-rendering in different ways. The NCBI Sequence

Viewer renders an image on the server and sends it to the client,

just like traditional CGI-based genome browsers. Unlike traditional

genome browsers, it allows the user to drag the image from side-to-

side as in Google Maps. Once the user does so, the server renders

a new image representing the new region. Switching from the old

image to the new image can be jarring for the user, though, espe-

cially if the feature layout has changed. This approach has server-

side computational costs similar to those of traditional genome

browsers. Anno-J renders genomic information on the client using

the ‘‘canvas’’ HTML element supported by some web browsers.

This relieves the server of the cost of rendering, but the server-side

database query cost remains. This strategy also limits users to web

browsers that support the canvas element, including Firefox and

Safari, but excluding Internet Explorer.

GBrowse version 2.0 (L Stein, pers. comm.) improves on the

original user interface by using Ajax to dynamically load, reorder,

and update browser tracks without triggering a full page reload. It

uses a ‘‘rubber band’’ interface to allow users to rapidly select and

zoom into a region of interest. However, it does not support

smooth zooming and panning and suffers the cost of server-side

rendering, although the impact of the latter is somewhat lessened

by the ability to spread out track rendering across multiple server-

side machines.

Here, we consider a different approach, where the client does

all the work of determining what genomic features are in the re-

gion of interest and then rendering those features using standard

HTML and JavaScript functionality. Both the database-query and

feature-rendering computational costs are borne by the client; the

use of standard HTML and JavaScript features means that JBrowse

will work for almost all modern web browsers. This approach is not

without its drawbacks; the principal one being that the environ-

ments for server-side web applications are considerably more ma-

ture than those for client-side applications in their robustness,

platform independence, existence of debuggers, and support for

reusable code libraries. In addition, when we began, the server-side

rendering code for existing genome browsers had already been

written and debugged, while client-side rendering mechanisms

were relatively untried. As a result, we found that the question of

client-side vs. server-side rendering was difficult to answer de-

finitively a priori. We implemented both client- and server-side

rendering mechanisms and compared their performance both

subjectively, and in terms of resource usage. Our empirical tests

definitively favor client-side rendering. (It may be worth empha-

sizing that these results cannot be extrapolated to all client-server

systems; decisions about how best to distribute work between cli-

ent and server depend heavily on the nature of the task at hand.)

Based on these tests, we decided to implement a genome

browser with client-side layout and rendering using Ajax tech-

nology. It implements essential genome browser features such as:

searching for annotations by name or ID, track selection, quanti-

tative (‘‘wiggle’’) tracks, exon–intron structure, and navigation bar.

Panning from left to right, zooming in and out, and reordering

tracks can all be done without communicating with the server;

having this functionality on the client makes these operations

faster and more fluid, which helps the user understand and com-

pare data at different loci and from different sources. The client-

side approach also achieves a significant reduction in server-side

processing costs, making it easier to support large numbers of users

and large amounts of data. In our implementation, no server-side

CGI programs are required for browsing; aside from the work of

preparing new data for use with JBrowse, the only work the server

does is to send static files to the browser-side routines. These static

files are organized in a way that enables the user’s web browser to

perform the work traditionally done on the server. In addition to

the server-side computational savings enabled by this approach, it

also takes advantage of the caching functionality built into the

HTTP protocol. If a user repeatedly views the same genomic loca-

tion, the data for that location will likely be cached on that user’s

computer, which almost entirely eliminates the time the user will

spend waiting for the server to respond.

JBrowse is sufficiently compact and modular that it can be

used as a drop-in component to a web content management sys-

tem, or other web application, such as a wiki or blog. To illustrate

this usage, we have developed an example ‘‘plug-in’’ for the TWiki

wiki engine, allowing users to upload sequence annotation files as

attachments to wiki pages; the resulting tracks then show up in

a JBrowse browser embedded in the page.

In this paper, we describe the features and architecture of

our client-rendered genome browser, as well as our earlier server-

rendered model. We also report empirical results of comparing

the architecture approaches (pre-rendering on server vs. live

client-side rendering) on genome annotation data from Dro-

sophila melanogaster. Online demos of our browser, client and
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server source code (freely distributed under an open source li-

cense), as well as support for users (such as tutorials and fea-

ture request) and developers, are available at our website: http://

jbrowse.org/.

Availability and installation
The JBrowse JavaScript genome browser can be test-driven at our

website (http://jbrowse.org/) using Firefox (version 2 or later), Sa-

fari (version 3 or later), or Internet Explorer (version 6 or later).

Browser demonstrations, source code (both client and server), bug-

and request-tracking system, tutorials, and other support infor-

mation are also available on our website.

All our code is available under a dual LGPL (http://www.gnu.

org/licenses/lgpl.txt) /Artistic license (http://www.perlfoundation.

org/artistic_license_2_0), free for academic and commercial use.

Installation of JBrowse is straightforward, requiring an Internet-

connected UNIX platform with a webserver (e.g., Apache) and Perl

libraries BioPerl (Stajich et al. 2002) and JSON, available from

CPAN (http://cpan.org/). (A copy of the JavaScript Dojo library is

included with the JBrowse source code.) The JBrowse code re-

pository can be browsed and code can be downloaded from http://

jbrowse.org/. Preparation of a website from a data source is as

straight forward as running a Perl script, as described in the tutorial

distributed with the JBrowse code.

For convenience, we have prepared an Amazon Machine Im-

age (a virtual machine image in which JBrowse and its prerequisites

are already installed) for quick and easy installation of a JBrowse

server on the Amazon EC2 cloud (http://aws.amazon.com/ec2/),

a large computer cluster that can be rented by the machine hour.

Requests for new features and extensions can be entered into

a tracking system using the Lighthouse web application, linked

from http://jbrowse.org/.

Results

Browser capabilities

Basic genome browser functionality

As seen in Figure 1, users can view genome annotations against

a reference ‘‘ruler,’’ with an overhead bar giving a visual indication

Figure 1. Screenshot of JBrowse, illustrating the various parts of the screen. The navigation panel (a) includes an overview of the genome and the
current location, together with navigation buttons for panning and zooming, a menu for selecting the current chromosome, and a text box for navigating
directly to coordinates or named features. Below this are the currently active tracks, which can include feature tracks (b) or bar graph image tracks for
displaying quantitative information (c ). To the left of the active tracks is the reservoir of unused tracks (d ), which can be dragged to the active track area,
upon which they will be expanded.
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of chromosome position. The user can navigate by dragging the

display left or right (which creates a smooth panning effect, with

no page reload) or by clicking on navigation buttons; analogous

buttons allow the display to be zoomed in or out (again, this is

a smooth effect, with no page reload). Alternatively, users can

navigate directly to a region (or feature) of interest by typing the

region coordinates (or feature name) into a search box. Additional

annotation tracks can be added to the current display by dragging

them from a reservoir bar on the left of the screen, and can be

removed by dragging them back off the main display. Tracks can,

similarly, be reordered by dragging. All track manipulation, as with

navigation, is live and requires no page reloads. Clicking on fea-

tures triggers a configurable action (such as opening a feature-

specific web page, or bringing up a pop-up window).

Multiple types of track

The browser can display basic features (using a variety of simple

glyphs), compound features (e.g., UTR/exon/intron structures),

and quantitative tracks that have a value for every base. At lower

zoom levels where too many features are displayed to be useful,

feature tracks are displayed as histograms showing feature density

instead, which presents the information contained in the data in

a terser, more useful way.

Flexible data sources

Data can be drawn from GFF files (for simple feature tracks), or

GFF3 files (for compound feature tracks), or from WIG files (‘‘wig-

gle,’’ i.e., quantitative, tracks). Alternatively, data can be imported

from a BioTDB database, building on the wide range of open-

source applications that work with BioPerl libraries (Stajich et al.

2002) and related databases such as Chado (Mungall et al. 2007).

Makefile-driven workflow

Assembly, alignment, annotation, and JBrowse viewing of genome

sequences can be viewed as successive steps in a workflow, as

shown in Figures 2 and 3. Here, we define a workflow as a set of

logical rules for transforming datatypes automatically, such as

a Makefile (Parker et al. 2003). We provide a Makefile that prepares

sequence and annotation files on a server for viewing by a JBrowse

client. Additionally, this Makefile defines simple file format con-

versions (e.g., conversion of annotation files from BED format

[http://genome.ucsc.edu/FAQ/FAQformat] to GFF format [http://

www.sequenceontology.org/gff3.shtml]). These Makefile rules can

be applied by downloading the relevant FASTA, BED, GFF, and/or

WIG files into the top-level directory and then executing ‘‘make

jbrowse.’’

Preservation of state

HTTP cookies are used to preserve the navigation state and track

selection/ordering preferences of individual users, so that a user

can close a browser window and open a new one, and it will still

show the same genome annotations.

Configuration files

In the manner of GBrowse, flexible configuration files allow the

database administrator to customize the tracks and their behavior,

including aspects such as glyphs and feature-click actions.

A ‘‘genome wiki’’

JBrowse is compact, open source, and has a simple JavaScript API,

so it is straightforward to embed JBrowse within other web appli-

cations, including rich Internet applications. To illustrate this

capability, we have developed a JBrowse plug-in for the Perl

wiki application, TWiki (http://twiki.org/). The core elements are

Makefiles, situating JBrowse as part of an extensible workflow sys-

tem whereby remote users of a wiki can trigger analyses by up-

loading sequence, annotation, or configuration files. This creates

an open-source, portable, extensible wiki for uploading and shar-

ing genome annotations. As discussed later, this plug-in is a step

toward the kind of system imagined by Salzberg (2007) and others,

providing rudimentary user account management, authentica-

tion, revision control, and bookmarking facilities. However, it

lacks database robustness, fine-grained feature editing, or broad

interoperability with other genome browsers and databases.

A screenshot of the browser is shown in Figure 1 and a com-

parison of the user experience to other browsers is presented in

Table 1.

Figure 3 shows the basic architecture of the JBrowse system.

The client can display sequence tracks (only visible at the highest

zoom level), simple feature tracks (essentially interval sets: each

simple feature corresponds to a contiguous interval of sequence),

compound feature tracks (where intervals are composed of sub-

intervals; e.g., protein-coding gene intervals have exon, intron,

and UTR subintervals) and quantitative tracks (currently repre-

sented as images in the style of bar graphs).

The JBrowse server requires some preprocessing of tracks be-

fore they can be served to the client (see the Methods section

for details); Perl scripts to do this preprocessing are provided.

Feature tracks are stored in Nested Containment Lists (NCLists)

(Alekseyenko and Lee 2007), gene names and other text-navigable

labels are stored in Patricia tries (Morrison 1968), and quantitative

(wiggle) tracks are rendered as image files. The preprocessing out-

puts are stored as static files on the server; these files can then be

served with minimal server load and they can also be cached by the

user’s web browser to reduce subsequent data traffic.

Figure 2. Schematic of an example workflow including JBrowse as the
final step. This workflow includes base calling, assembly, annotation,
alignment, and comparative annotation, with preparation of JBrowse files
as the final step required before they can be viewed online. For more
details on the preparation of the JBrowse files, see Figure 3.
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Comparison of server- and client-side rendering

As noted in the introduction, we first implemented a Google Maps

version of GBrowse, the generic genome browser (Stein et al. 2002),

that pre-rendered all tracks as statically served image files. The

GBrowse Perl server renders graphics primitives using the GD

graphics library (http://libgd.org/), for which we wrote a thin Perl

proxy class that intercepted drawing primitives and stored them in

an SQL database (or in-memory), allowing the primitives to be later

‘‘replayed’’ in order to generate individual tiles; thus, feature layout

is performed once only, ensuring consistency between tiles. A

JavaScript client then consults a tile index file to retrieve and or-

ganize tiles for display. This is a quite general approach that can be

used to scale any pre-rendered graphics to arbitrarily large di-

mensions for interactive Google Maps-like exploration over the

web; the GD proxy class (TiledImage.pm) and JavaScript client are

available from our code repository.

In contrast, JBrowse represents genomic features graphically

in the web browser using HTML elements. These elements are not

typically used for graphics, because they can only take the form of

horizontal or vertical rectangles. How-

ever, for displaying genomic features,

rectangles are appropriate; they can rep-

resent a feature with a start and stop po-

sition on a chromosome, optionally, with

additional rectangles for subfeatures (like

exon/intron/UTR/CDS transcript struc-

ture). HTML rectangles can also use back-

ground images to indicate strand and

phase information. Genomic data that

does not fit into this rectangular mold

(such as dense quantitative data) can be

displayed in JBrowse through images (as

with TiledImage) at the cost of extra

storage space and processing time.

Both approaches (JBrowse and Tiled-

Image) require the input genomic data

to be preprocessed. This preprocessing is

significant to the application’s potential

use, as slow preprocessing performance

may limit interactivity when tracks can

be uploaded by users; in addition, large

index storage requirements on the server

side may be prohibitive.

To compare resource utilization of

server-side and client-side rendering of

genome annotations, we conducted a

benchmark of TiledImage (server-side)

and JBrowse (client-side) running on the

same hardware. We drew annotations

from FlyBase version 5.1 (Tweedie et al.

2009). The platform used for bench-

marks was a 2.2 GHz 64-bit AMD Opteron

server with 2Gb of RAM running Centos

4.6 Linux with the ext3 file system. The

genome annotation database was BioT

DBTSeqFeatureTStore from BioPerl ver-

sion 1.6 (Stajich et al. 2002) with MySQL

4.1 on the back end.

The raw data of our benchmark for

feature tracks (e.g., GFF or BED files) are

shown in Table 2. Resource utilization is

plotted as a function of the number of

features in the track in Figure 4 (runtime) and Figure 5 (storage).

The figures show a monotonic increase in resource usage with re-

spect to feature count; theoretically, putting N elements into

a NCList takes at least as long as sorting those N elements, i.e., O(N

log N ); beyond this, no analytical results for the time complexity

are known. Similarly, we expect at least O(N log N) time complexity

for TiledImage to store, index, and retrieve graphics primitives for

N features, though Table 2 and Figure 4 clearly show that, in

practice, JBrowse is much faster at preprocessing than TiledImage.

Generically, we would expect to need at least O(N) for storage in

both cases, and potentially O(N log N) for TiledImage (due to

indexing of the graphics primitives). Again, we find that JBrowse is

far more efficient in practice, as shown by Table 2 and Figure 5. We

speculate that the dramatic difference in performance between the

TiledImage and the NCL preprocessing steps is due to overhead

from GD graphics library’s server-side rendering and layout oper-

ations, which were not designed to render chromosome-length

track images. In contrast, the most time-consuming step in gen-

erating an NCL is the initial sort of the features.

Figure 3. Schematic of JBrowse architecture showing the components of the server and the client.
The ‘‘Server’’ area shows the data served by the web server (rectangles), the programs that generate
that data (arrow labels), and the data sources used in turn by those programs (cylinders). The ‘‘Client’’
area shows the main pieces of code that run in the web browser, how they fit together, and what data
they consume.
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We also benchmarked the resource utilization of JBrowse

for pre-rendering quantitative track images from WIG files. Results

are shown in Table 3, indicating a rate of data-point generation

(;1.6 3 106 points/sec) and file-system usage (;6 bytes/point)

that is roughly independent of the size of the track. No compari-

son to TiledImage was necessary here, since JBrowse also uses a

server-side pre-rendering approach for such tracks. The rate-limiting

step in this image rendering procedure appears to be image com-

pression of the resulting monochromatic bar graph images, which

are stored in PNG format (data not shown). Alternate compact

visualization formats, e.g., single-pixel grayscales, rather than

multipixel bar graphs, might therefore save some time, since the

compression step would have fewer pixels to deal with. Conceiv-

ably, rendering these tracks on demand would also save time

during track preparation (although preparation would still involve

reading the entire WIG file).

In addition to the server-side costs, the client-side costs must

also be considered. Since JBrowse moves some costs from the

server to the client, the capabilities of the client may impose scal-

ing limitations on JBrowse. It is difficult to quantify those lim-

itations, however, because they are heavily dependent on the user’s

web browser and hardware, and the limits are subjective, mani-

festing mainly as slower animations, longer download waits, and

garbage collection pause times. To qualitatively investigate those

limits, we created a JBrowse instance using the hg19 human data

from the University of California at Santa Cruz (Kuhn et al. 2009).

JBrowse can accommodate large amounts of sequence data by

breaking it up into easily handled segments, but the JBrowse

NCList implementation used to store features is currently in-

capable of breaking down feature sets into pieces smaller than one

per track per chromosome. On our circa-2005 hardware, JBrowse

easily handles feature tracks with tens of thousands of features

in a track/chromosome, and can go up to the low hundreds of

thousands with some performance loss. This is enough to ac-

commodate all the tracks we have encountered except for the

human EST and SNP tracks. We believe that accommodating those

tracks are straightforward engineering,

and that work is high on our list of pri-

orities for the future. In the near term,

large feature sets might be loaded into

JBrowse as subsets. For example, rather

than having all SNPs in the same track,

they could be broken down into coding/

intronic/intergenic, etc., or filtered to

only include confirmed SNPs, or SNPs

that correspond to mutations recorded in

OMIM.

Discussion
We have implemented an open source

genome browser, JBrowse; the server can

be readily downloaded and installed on

UNIX systems, while the client is actively

tested on Firefox, Safari, and Internet

Explorer. We report benchmark compar-

isons to a server-side rendering imple-

mentation derived from GBrowse, and

outline a broad summary of the com-

plexity issues and other challenges we

encountered in developing this proto-

type. We demonstrate that client-side

rendering of genome annotation data, with minimal server-side

preprocessing (to facilitate fast queries by the client), requires sig-

nificantly less up-front work than bulk server-side pre-rendering.

We have also implemented a simple wiki plug-in that allows

users to embed fully interactive JBrowse instances into wiki pages

and configure them via wiki file uploads. In 2007, Steven Salzberg

called for a genome wiki, commenting that ‘‘A wiki would allow-

the community of experts to work out the best name for each gene,

to indicate uncertainty where appropriate and to discuss alterna-

tive annotations’’ (Salzberg 2007). Our technical interpretation of

such a wiki, discussed at greater length on our website (http://

biowiki.org/GenomeWiki), includes the following five desiderata:

core wiki functions (i.e., an intuitive user interface offering the

ability to upload, browse, share, and revise annotation tracks),

Figure 4. Time to generate tracks: TiledImage vs. JBrowse. Time re-
quired to generate each D. melanogaster feature annotation track, plotted
as a function of the number of features in the track, for both server-side
rendering (TiledImage, squares) and client-side rendering ( JBrowse, cir-
cles). See Table 2 for raw data. See Results section for description of data,
hardware, and software used in this benchmark.

Table 2. Runtime and storage requirements to generate D. melanogaster GFF (feature) tracks
using server-side rendering (TiledImage) and client-side rendering (JBrowse)

TiledImage JBrowse

Track name
Number of

features
Time
(min)

Disk space
(kb)

Time
(min)

Disk space
(kb)

Gene 2756 26.36 2,035,004 0.665 364
mRNA 3634 107.58 2,438,316 0.528 1312
Chromosome_band 806 42.43 3,155,720 0.294 120
tRNA 41 0.97 22,464 0.003 24
NoncodingRNA 79 1.49 33,456 0.004 32
Transposable_element 1015 6.86 266,272 0.164 172
TE_insertion_site 7033 59.55 657,368 0.544 1248
Oligo 45,775 51.86 997,068 1.382 2160
BAC 184 36.81 3,157,352 0.054 20
Protein_binding_site 186 1.6 23,932 0.011 24
Rescue_fragment 53 1.92 73,408 0.014 16
Enhancer 5 0.75 22,624 0.001 16
Regulatory_region 27 0.93 20,884 0.004 16
Point_mutation 364 3.45 47,808 0.053 28
Sequence_variant 96 1.93 38,440 0.014 20
Aberration_junction 34 1.15 33,224 0.008 16
Total 62,088 345.65 13,023,340 3.74 5588

Numbers are totals summed over all D. melanogaster chromosomes. These tracks are stored as NCList
data structures (Alekseyenko and Lee 2007). See Results section for description of data, hardware, and
software used in this benchmark.
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bioinformatic granularity (i.e., common wiki functions, such as

editing or browsing revision histories, should work down to the

level of individual features and subfeatures), a robust database back

end, portability of open-source client and server code, and com-

patibility with standard web applications (e.g., search engines),

protocols (e.g., Google PageRank), bioinformatics file formats, es-

tablished biological databases and browsers, and other bioin-

formatics terminologies and standards (e.g., the Gene Ontologies

[Ashburner et al. 2000]). The example JBrowse wiki plug-in has core

wiki functions, portability, and rudimentary standards-compliance

(it speaks common bioinformatic file formats). Basic user authen-

tication and revision control mechanisms are provided by the un-

derlying wiki engine (TWiki; http://twiki.org/). However, TWiki’s

underlying database is not particularly robust (it uses the server file

system), and the JBrowse plug-in offers edit operations only at the

atomic level of entire tracks, not finer-grained annotation elements

such as genes or exons. For comparison, the Genboree system

(http://www.genboree.org/) satisfies most of our criteria for a ge-

nome wiki, but lacks portability (it is designed to be a hosted ser-

vice, run only on one site) and has a page-based CGI user interface.

To demonstrate how JBrowse can be embedded in other

applications, we have provided a plug-in implementing a genome

wiki, whereby tracks can be uploaded and shared by users (in the

manner of Google Calendar or Google

Documents). Our future plans for this in-

clude APIs for advanced search (e.g., on

track metadata, such as authorship or ex-

perimental information) and client noti-

fication of newly uploaded tracks.

Methods
In this section, we first outline the general
issues and design principles that moti-
vated the choice of data structures for the
system, then discuss in detail our specific
implementation.

JBrowse is a client-server application
operating over the Internet, where client
and server are implemented in different

languages and operate on data asynchronously. The client side
is implemented in JavaScript using the Dojo library (http://
dojotoolkit.org/); the server, in Perl with the BioPerl library
(Stajich et al. 2002).

Issues that motivated the choice of novel data structures
for the system

Ease of implementation

Typically, due to the difference in operating environments and
programming languages, each data structure must be imple-
mented twice: once on the server and once on the client. A se-
rialized representation for network transmission must also be
implemented. This strongly favors simple data structures that are
intuitively easy to understand and debug.

Efficiency of data structure preparation and readout

Efficient access to data structures is important for a responsive
client; efficient construction and serialization of those same
structures is important for an interactive server application, par-
ticularly in the context of a wiki-like application (such as our TWiki
plug-in) where genome annotation tracks can be uploaded and
shared.

Storage and CPU usage on the server

As noted in the Results section, inefficient server implementations
could require terabytes of storage and hours or days to preprocess
data.

Resident memory size and CPU usage on the client

Since the client is running within a web browser, a somewhat
limited environment compared to a full operating system, it is
essential that it not overburden the web browser with excessive
demands on memory or CPU usage.

Size on the wire

As well as the ‘‘traditional’’ analyses of time, memory, and disk
usage noted above, every effort must be taken to minimize the byte
size of the serialized form of the data. Otherwise, network latency
will become prohibitive for interactive browsing.

Tracks can be added by running Perl scripts on the server to
preprocess raw annotation files (GFF/GFF3 for simple/compound
feature tracks, WIG for quantitative tracks, and FASTA for sequence
tracks) and generate the relevant files that are downloaded by the

Table 3. Runtime and storage requirements for server-side rendering of D. melanogaster WIG
(quantitative/wiggle) tracks in JBrowse

Chromosome Data points
Actual file
size (kb)

File system
overhead (kb)

Time
(min) Points/sec

Bytes/
point

2L 22,988,826 52,930 74,546 2.366 161,961.58 5.68
2R 21,090,805 48,908 70,024 2.147 163,735.77 5.77
3L 24,508,307 56,490 80,246 2.486 164,297.83 5.71
3R 27,844,634 65,842 90,842 2.838 163,503.43 5.76
4 1,262,099 2476 4460 0.128 168,461.41 5.5
X 22,250,064 52,171 73,773 2.269 163,447.18 5.8
Total 119,974,735 278,817 393,891 12.234

The WIG data used here is the 15-way conservation data for the dm3 assembly from the UCSC Genome
Browser (Kent et al. 2003). These tracks are stored as images, rendered at multiple zoom levels, and are
fragmented into many files; consequently there is substantial file-system storage overhead, which is also
shown. See Results section for description of data, hardware, and software used in this benchmark.

Figure 5. Disk space required to store track: TiledImage vs. JBrowse.
Disk space required to store each D. melanogaster feature annotation
track, plotted as a function of the number of features in the track, for both
server-side rendering (TiledImage, squares) and client-side rendering
( JBrowse, circles). See Table 2 for raw data. See Results section for de-
scription of data, hardware, and software used in this benchmark.
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client ( JSON files for simple/compound feature tracks, PNG images
for quantitative tracks, and chunked strings for sequence tracks).
Alternatively, the annotations can be fetched from a BioPerl
genome database (BioTDB, BioTDasI, etc.), in which case a con-
figuration file (somewhat styled after the GBrowse con figuration
file [Stein et al. 2002], but using the JSON format) identifies the
database and determines the track listing and types.

In the case of feature tracks, the generated files are JSON
representations of Nested Containment Lists, or NCLists. An
NCList is an efficiently queryable data structure for an interval set
(Alekseyenko and Lee 2007). The interval set is decomposed into
disjoint subsets, arranged in a hierarchical tree. Within each sub-
set, there are no two intervals such that one interval is fully con-
tained by the other interval (condition 1). Each subset is sorted by
interval startpoint; since there are no containment relationships
within the subset, the subset is also sorted by an interval endpoint.
Furthermore, all the intervals in a subset are fully contained within
one interval of the parent subset (condition 2). These two con-
ditions allow efficient querying for intervals overlapping a given
range (Alekseyenko and Lee 2007). An example NCList is illus-
trated in Figure 3. The asymptotic time complexity to construct an
NCList in place from an unsorted interval set empirically appears
to be O(N log N); the time complexity of querying it for intervals
overlapping a given range is known to be O(n + log N), where N is
the cardinality of the interval set and n is the number of intervals
returned by the query. While this performance is similar to com-
peting interval set containers, such as R-trees (Guttman 1984) or
quad-trees (Finkel and Bentley 1974), NCLists in practice are
considerably simpler to implement, with lower storage overhead.
In benchmarks, NCLists compared very favorably to competitors,
running 10–50 times faster than R-trees (Alekseyenko and Lee
2007). One drawback of NCLists is that they currently lack pub-
lished algorithms for in-place modification or partial loading;
these would clearly be useful (e.g., for incremental loading of big
tracks), motivating future development of such algorithms.

The text box on the JBrowse page may be used to navigate
directly to named features of interest. To locate features quickly,
the client uses a Patricia Trie or radix tree (Morrison 1968), which is
prepared on the server concurrently with the NCLists, and lazily
loaded by the client (only required nodes are fetched, so that the
entire feature dictionary does not have to be downloaded when-
ever the user tries to search for a feature). Extraction of feature
names from input files is controlled by the configuration file.

WIG files are rendered into PNG images at multiple zoom
levels. These images are then broken into tiles and delivered on
request to the client. The client displays these images agnostically
with respect to their content, so in fact any fixed-height image
track (not just bar graphs or other representations of wiggle tracks)
can be displayed along the genome, as long as sufficient disk
space exists to store them on the server. Thus, JBrowse effectively
subsumes server-side-rendering genome browsers such as Genome
Projector (Arakawa et al. 2009) and TiledImage. (Note, however,
that pre-rendering WIG tracks is considerably less computationally
expensive than pre-rendering GFF tracks; cf. Tables 2 and 3.)
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