[1–7]

Author Query Form

Journal:Briefings in Functional GenomicsArticle Doi:I0.1093/bfgp/elt054Article Title:A context dependent role for DNA methylation in bivalvesFirst Author:Mackenzie GaveryCorr. Author:Steven Roberts

AUTHOR QUERIES - TO BE ANSWERED BY THE CORRESPONDING AUTHOR

The following queries have arisen during the typesetting of your manuscript. Please answer these queries by marking the required corrections at the appropriate point in the text.

- AQI: Please check whether the suggested running title is OK as given.
- AQ2: Please check that all names have been spelled correctly and appear in the correct order. Please also check that all initials are present. Please check that the author surnames (family name) have been correctly identified by a pink background. If this is incorrect, please identify the full surname of the relevant authors. Occasionally, the distinction between surnames and forenames can be ambiguous, and this is to ensure that the authors' full surnames and forenames are tagged correctly, for accurate indexing online. Please also check all author affiliations.
- AQ3: Please provide telephone and fax number for corresponding author.
 - Please provide a Funding statement, detailing any funding received. Remember that any funding used while completing this work should be highlighted in a separate Funding section. Please ensure that you use the full official name of the funding body, and if your paper has received funding from any institution, such as NIH, please inform us of the grant number to go into the funding section. We use the institution names to tag NIH-funded articles so they are deposited at PMC. If we already have this information, we will have tagged it and it will appear as coloured text in the funding paragraph. Please check the information is correct.
- AQ5: Please provide volume number for references 6 and 44.
- AQ6: Please provide editor's name, publisher name and location for reference I7.
- AQ7: Please provide volume and page range for reference 3I.
- AQ8: Please provide page number for reference 42.
- AQ9: We will convert figure(s) I and 2 to black and white for the print edition of your article. These figures will be in colour only in the online version. Please check the black and white versions at the end of the paper and contact us if you have any concerns. Please reword the legend/text to avoid using reference to colour. Alternatively, please let us know if you wish to have both versions in black and white.
- AQI0: Figure has been placed as close as possible to their first citation. Please check that it has no missing sections and that the correct figure legend is present.

Making corrections to your proofs

- Please use the tools in the Annotation and Drawing Markups toolbars to correct your proofs. To access these, press 'Comment' in the top right hand corner.
- If you would like to save your comments and return at a later time, click **Publish Comments.**
- If applicable, to see new comments from other contributors, press Check for New Comments
- Once you have finished correcting your article, click Finalize/Finalize PDF Comments.
- The Publish Comments and Finalize/Finalize PDF Comments options are available either as:
 - 1. A pop up JavaScript Window, shown right, or
 - 2. By clicking 'Tools' in the top right hand corner, then clicking 'JavaScript Window', shown right.
 - 3. Do not close the Javascript window.

Annotation tools

T Insert text at cursor: click to set the cursor location in the text and start typing to add text. You may cut and paste text from another file into the commenting box

Replace (Insert): click and drag the cursor over the text then type in the replacement text. You may cut and paste text from another file into the commenting box

Strikethrough (Delete): click and drag over the text to be deleted then press the delete button on your keyboard for text to be struck through

Comments list This provides a list of all comments and corrections made to the article. It can be sorted by date or person. Annotations

P	IJ	G	W	& -		
Te	₽ø	Ŧ	T	Ъ		
 Drawing Markups 						
▼ Con	nment	s List ((9)			
🔍 Fin	d		ĝ-	∕? * 8=		
Page 1 1	ey •	012 09:2	0:48			

			Comment				
 Annotations 							
P	Ţ	Ċ	Ŵ	- 2			

PURLIC RELEAS

JavaScript Window	×			
Publish Comments	Finalize			
Warning: JavaScript	Window			
Tools C	Comment			
▼ JavaScript Window				
Publish Comments	Publish Comments			
Finalize				

Underline: click to indicate text that requires underlining

Add sticky note: click to add a comment to the page. Useful for layout changes

Ъ Add note to text: click to add a note. Useful for layout changes

Highlight text: click to highlight specific text and make a comment. Useful for indicating font problems, bad breaks, and other textual inconsistences

Drawing tools There is the ability to draw shapes and lines, if required.

🔏 🧐 🚢 🔭 Attach file, Record audio, and Add stamp are not in use.

A context dependent role for DNA methylation in bivalves

AQ2 Mackenzie, Gavery and Steven, Roberts

Abstract

- ⁵ The function of DNA methylation in species such as bivalves where the limited amount of DNA methylation is predominantly found in gene bodies remains unclear. An emerging possible explanation is that the role of gene body DNA methylation is dependent on gene function, a potential phenomenon that has arisen from selective pressure on lineage-specific life history traits. In genes contributing to phenotypes that benefit from increased plasticity, the absence of DNA methylation could contribute to stochastic transcriptional opportunities and increased trans¹⁰ posable element activity. In genes where regulated control of activity is essential, DNA methylation may also play a
- role in targeted, predictable genome regulation. Here, we review the current knowledge concerning DNA methylation in bivalves and explore the putative role of DNA methylation in both an evolutionary and ecological context.

Keywords: oysters; bivalves; methylation; epigenetics; plasticity; invertebrates

- ¹⁵ The variability observed in DNA methylation landscapes and functionality in invertebrates is fascinating from both a molecular and evolutionary perspective. At the molecular level we are still uncovering the many nuances associated with the functional mechanism of methylation, which in turn should eventu-
- ²⁰ anism of methylation, which in turn should eventually provide insight into the evolution of this prevalent epigenetic mark. Although we continue to understand more about DNA methylation in invertebrates, relatively limited information exists
- ²⁵ concerning the role of DNA methylation in molluscs. The phylum Mollusca is incredibly diverse and consists of more than 100 000 species. The class Bivalvia is a particularly relevant group as it includes species of significant ecological (i.e. sentinel
- ³⁰ species, ecosystem engineers) and commercial (i.e. fisheries, aquaculture) importance. Here, we review the current knowledge concerning DNA methylation in bivalves and explore the putative role of DNA methylation in both an evolutionary ³⁵ and ecological context.

The presence of DNA methylation has been confirmed in several bivalves including the Japanese scallop, *Chlamys farreri* [1], the salt water clam, *Donax*

trunculus [2] and the Pacific ovster, Crassostrea gigas [3]. Using high-throughput sequencing of bisul-40 fite treated DNA (BS-Seq), it was recently determined 15% of CpG dinucleotides (1.8% of total cytosines) in the C. gigas genome are methylated [4], similar to the 2% total methylation for a gastropod (snail) as measured by LC-MS [5]. Methylation 45 levels reported for the Pacific oyster were characterized in adult gill tissue but it is important to note that methylation levels are likely to vary among life history stages and among tissue types. This point is clearly indicated by Riviere et al. [6] where they used 50 an ELISA to quantify relative DNA methylation in developing oysters. Although the ELISA approach does not provide comparable values with respect to the extent of absolute DNA methylation levels, 55 methylation almost doubled during the morula and blastula stage as compared to oocyte and then decreased again during later developmental stages [6].

DNA methylation in bivalves appears to be predominantly found in gene bodies [4]. The observation that gene bodies are the primary methylated genomic feature is consistent with what has been described in other invertebrates [7–9]. There is

60

Corresponding author. S. Roberts, School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, [AQ3] WA 98105, USA. E-mail: sr320@uw.edu

Mackenzie Gavery is a PhD candidate in the School of Aquatic and Fishery Sciences at the University of Washington. She is interested in understanding how epigenetic mechanisms mediate environmental signaling and adaptation in bivalves. **Steven Roberts** is an associate professor in the School of Aquatic and Fishery Sciences at the University of Washington where his research focuses on characterizing physiological responses of marine organisms to environmental change.

© The Author 2013. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

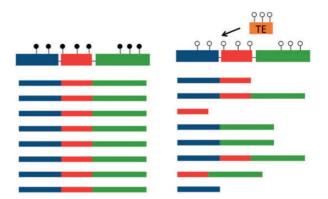
page 2 of 6

[1–7] MANUSCRIPT CATEGORY: REVIEW PAPER

Gavery and Roberts

Paper: OP-BFGP130054

increasing evidence that this form of methylation is the ancestral pattern [10] as gene body methylation is observed not only in invertebrates and vertebrate species [11] but also in plants [12]. The function of


- 5 DNA methylation in species such as bivalves where the limited amount of DNA methylation is predominantly found in gene bodies remains unclear. One possible explanation that is emerging is that the role of gene body DNA methylation is dependent on the
- 10 gene function, a potential phenomenon that has arisen from selective pressure on lineage-specific life history traits. In genes whose function may benefit from increased variability (e.g. immune response), the absence of DNA methylation contributes to sto-
- 15 chastic 'transcriptional opportunities', whereas genes considered core to survival (e.g. housekeeping genes) are protected from this type of transcriptional variation by the presence of DNA methylation [13]. This theory of beneficial stochastic variation as a result of
- hypomethylation could also be extended to other 20 regions of the genome such as transposable elements (TEs). Further, and not mutually tlusively, DNA methylation may also play a role and directed and targeted genome regulation. It should also be noted
- that an alternative explanation for intragenic DNA 25 methylation patterns is that it is solely a byproduct of having an open and accessible chromatin state [14]. Here, we will explore studies of both stochastic and targeted methylation functions that are emerging as
- 30 potential roles for DNA methylation in bivalves.

STOCHASTIC VARIATION

35

A classical explanation of gene body methylation is that it reduces transcriptional noise by preventing initiation of transcription outside of traditional transcription start sites (TSSs) [15]. There are data to

- support this explanation in mammals [16], though to our knowledge, this idea has not been tested directly in an invertebrate. The implication of this explanation is that unmethylated regions would 40
- be inherently 'noisier'. In other words, a variety of transcriptional products are produced. It has been proposed that this type of transcriptional noise could result in more diverse transcriptional opportunities [13], which may be beneficial for organisms
- 45 such as marine bivalves that live in unpredictable and variable nearshore habitats, and as a result, have unpredictable and variable reproduction and recruitment success. As such, oysters may use epigenetic systems to maintain the genomic and phenotypic

AO9

AQ10

Figure I: Stochastic regulation. A simplified model of stochastic transcriptional opportunities based on limited DNA methylation. Open and closed circles represent unmethylated and methylated CpG, respectively. Thick boxes represent individual exons of a single gene and thin boxes below represent transcriptional outcomes. In this theoretical model predominantly methylated genes (left) produce consistent transcriptional outcomes, whereas unmethylated genes (right) generate transcriptional 'noise' in the form of splice variants. In addition, unmethylated TEs may actively insert into the genome where they could produce transcriptional variation in the form of truncated transcripts or splice variants.

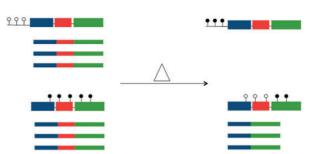
diversity necessary for a species that undergoes 50 this type of 'sweepstakes reproduction' [17] where chance events dictate which individuals are successful each spawning season. The lack of methylation, by allowing more transcriptional opportunities in genes functionally associated with environmental response, 55 may contribute to phenotypic plasticity by providing access for transcription factors to bind to alternative TSSs, facilitating exon skipping or other alternative splicing mechanisms, and/or through unknown mechanisms supporting increased sequencing vari-60 ation [13] (Figure 1). Although direct evidence is currently lacking to support the idea that hypomethylation is correlated with increased transcriptional opportunities in bivalves, recent evidence is concordant with this possibility in insects. 65 Specifically, in the honeybee Apis mellifera, knockdown of global methylation was associated with increased transcriptional opportunities in the form of the generation of splice variants [18].

Consistent with the theory that limited methyla-70 tion allows for a variety of transcriptional opportunities is the possibility that TE mobilization may be facilitated by the lack of repressive DNA methylation in bivalves (Figure 1). In vertebrates and some plants,

[1–7]

A context dependent role for DNA methylation

Paper: OP-BFGP130054


MANUSCRIPT CATEGORY: REVIEW PAPER

page 3 of 6

AQ1

extensive methylation of TEs suppresses their activity in the genome [19]. In invertebrates, species such as *A. mellifera* show very little methylation in TEs [9]. Likewise, in oysters there appears to be no preponderance of TE methylation [4]. The finding that TEs

- ⁵ derance of TE methylation [4]. The finding that TEs are not methylated in oysters is consistent with the theory outlined above regarding the ability of a population to present a variety of phenotypes in response to environment change (i.e. phenotypic
- ¹⁰ plasticity). Thus, the absence of TE methylation may indicate an evolutionary pressure to retain the variation generated by TE mobilization to maintain genetic diversity in a species inhabiting heterogeneous environments [20].
- It is worth considering the relationships between DNA methylation, TEs and transcriptional/genomic variation in light of recent evidence coming from studies of DNA methylation and stress response in plants. For example, it has recently been reported
- that DNA methylation is involved in regulating the defense response of *Arabidopsis thaliana* to the pathogen *Pseudomonas syringae* [21]. Using mutant strains of *A. thaliana* defective in the various types of DNA methylation, Dowen *et al.* were able to show
- ²⁵ that genome-wide hypomethylation increased plant resistance to the pathogen and was associated with mobilization of TEs and dysregulation of several immune response genes. This was further examined by Yu *et al.* [22] where *Arabidopsis* subject to bacterial
- ³⁰ challenge exhibited globally reduced DNA methylation. This resulting hypomethylation was associated with the reactivation of previously silent TEs. The authors conclude that the defense response in *A. thaliana* is negatively regulated by DNA methyla-
- tion, and propose that hypomethylation is a part of the plant immune response that acts by priming transcriptional activation of defense genes that are linked to TEs. Considering these studies as a whole, it is interesting that oysters, like plants, which are immo-
- ⁴⁰ bile and face intense selection at early life stages, may benefit from these 'noisy' or 'unstable' genomes. It is important to note that the lack of DNA methylation does not preclude TE silencing, which can be repressed by a variety of epigenetic mechanisms
- ⁴⁵ (reviewed [23]). Future investigation in bivalves should focus on characterizing these additional epigenetic marks (e.g. histone modification, noncoding RNAs) to determine what roles they might play in stabilizing bivalve genomes, and examining the relationship between TE activity and environmental
- ⁵⁰ relationship between TE activity and environmental stress.

Figure 2: Targeted regulation. A simplified model of targeted regulation of gene products via dynamic methylation/demethylation in response to extrinsic or intrinsic signals. Open and closed circles represent unmethylated and methylated CpG, respectively. Thick boxes represent individual exons of a single gene and thin boxes below represent transcriptional outcomes. In the top example, changes in methylation status in proximity to transcription initiation site may inhibit or promote transcription. In the lower example a change in methylation status in the gene body produces a transcriptional variant. Potential initiators of these methylation changes could be cues from the environment or associated with developmental processes.

TARGETED REGULATION

A second explanation regarding a role for DNA methylation as it pertains to gene body methylation in bivalves is that the epigenetic mark regulates tran-55 scriptional activity in a targeted, predictable manner (Figure 2). Evidence is emerging linking gene body methylation to a potential function in regulating alternative splicing [24,25]. The production of both constitutive and alternative isoforms by alternative 60 splicing is important for developmental processes and tissue-specific functions. In oysters, alternative splicing regulates the generation of both tissuespecific [26] and stress activated [27] isoforms of genes. The relationship between methylation and 65 splicing has been examined in Dumber of studies performed in A. mellifera [9,18,28]. Mechanistically, it has been proposed that exon-specific DNA methylation may impact exon-skipping through inter-70 actions with DNA-binding proteins (CTCF) and subsequent effects on RNA polymerase II pausing [25]. Interestingly, although intronic methylation is rare in A. mellifera, Foret et al. [28] identified a relationship between differential methylation in an intron upstream of a differentially expressed cassette 75 exon of the ALK gene. Specifically, they reported that low methylation was correlated with high inclusion of the upstream exon [28].

5

[1–7]

page 4 of 6

Gavery and Roberts

Additional support for a targeted role in regulating transcription in bivalves is the recent work of Riviere et al. [6]. Investigators examined the relationship between expression and methylation in homeobox (hox) genes, a kindly of genes that are critical developmentationes. Riviere *et al.* [6] observed an inverse relation p with gene body methylation and expression, and hypothesized that the apparent sup-

- pression of hox expression by DNA methylation was 10 due to a 'CpG island-like' repression by DNA methylation proximal to the TSS in these genes. Results were obtained using methylated DNA immunoprecipitation qPCR, so the context of the region investigated was known. When possible (6 of
- 10 genes) the prion examined was in the first exon or 5' UTR. The trend is similar to repression in 15 proximal promoter/first exon repression as seen in mammals. Riviere et al. [6] not only provide evidence of active regulation of transcription via gene body
- 20 methylation, but their work also suggests mechanism similar to the conventional repressive nature of promoter methylation in vertebrates. While little research exists on the relationship, of promoter methylation and expression in invertebrates, there is at least
- 25 one report in molluscs. In Aplysia, Rajasethupathy et al. [29] found that serotonin exposure induced an increase in methylation in the promoter of the CREB2 gene, which is associated with the downregulation of CREETINRNA in neurons.
- 30 In general, CpG island containing promoter methylation is not typical in invertebrates [8]; however, it is possible that depending on the context of the methylation (i.e. whether gene body or promoter methylation) it may play either a repressive or ex-
- 35 pressive role. This is known as the DNA methylation paradox [30] and has been observed in a wide range of taxa.

FUTURE DIRECTION

- Continued endeavors exploring the role of DNA 40 methylation in invertebrates will certainly shed light on general similarities and lineage specific nuances. There remains a multitude of research questions and phenomena that need attention; among them are some of the ideas presented here. The
- 45 only direct evidence available relating DNA methylation and expression in bivalves focuses either on a single family of genes (i.e. hox) [6] or genome-wide analysis of pooled individuals [4]. To ultimately gain a better understanding of this, future studies are

needed to characterize genome wide methylation 50 and gene expression on individuals with consideration toward cell type, developmental stage and environmental condition. A draft genome of C. gigas is now available [31], and new bivalve genomic resources are increasingly available to the 55 scientific community, allowing us to characterize stochastic versus targeted roles for DNA methylation in bivalves. Future investigations into other epigenetic phenomena, including histone modifications and non-coding RNAs, will provide a fuller picture 60 regarding genome regulation in bivalves.

Another important question is the extent that the environment influences DNA methylation in bivalves. In other species it has been clearly shown that DNA methylation can be influenced by the 65 environment [32-34]. Interestingly, one of the best examples of this phenomenon comes from findings in an invertebrate. In honeybees, larvae fed royal jelly become queens, which are phenotypically distinct from workers. It has been shown that DNA 70 methylation serves as an intermediary between this environmental signal (nutrition) and the developmental outcome into a queen or a worker [35]. It is a likely generality that the environment influences DNA methylation in bivalves, though pos-75 sibly in a different fashion, in light of the ideas presented here with respect to the stochastic nature of new transcriptional opportunities and local adaptation.

80 It remains to be determined to what extent transgenerational epigenetic inheritance occurs in invertebrate taxa. In mammals, evidence exists of transgenerational inheritance of DNA methylation patterns and phenotypes in response to certain xeno-85 biotics [36,37]. Transgenerational inheritance of DNA methylation patterns associated with phenotypes (epialleles) have also been observed in plants [38,39], including evidence that environmental stress induces heritable changes [40]. Transgenerational epigenetic inheritance has not been investigated in 90 bivalves, but one particularly intriguing possibility to explore is the role of DNA methylation in protecting future generations through an acquired stress response. Bivalves are generally sessile and do not directly interact with their offspring. One way a bivalve 95 could 'inform' their offspring about recent environmental conditions is through the transmission of epigenetic marks such as DNA methylation.

If epigenetic marks are heritable, they may play a role in evolutionary processes. To address the 100

AQ1

5

Paper: OP-BFGP130054

MANUSCRIPT CATEGORY: REVIEW PAPER

question of heritability, we need to compare levels of existing epigenetic variation in natural populations with genetic variation. This indeed could be a game changer, as epigenetic variation may offer a new platform for selection. There has been some work done in vertebrates and plants [41–43], though information in invertebrates is limited. Researchers have started to address this fact in oyster aquaculture settings in response to mass selec-

- ¹⁰ tion protocols. Jiang *et al.* [44] used a methylationsensitive amplified polymorphism methodology to identify epigenetic variation between a base population and a fourth generation mass selection population. They also used AFLP to look at genetic
- ¹⁵ variation. Jiang *et al.* [44] found genetic variation with no epigenetic variation over all, though specific differences were observed. The authors observed a correlation between epigenetic and genetic variation. Despite the limitations of this study in using a rela-
- tively small number of random markers, it is the first study comparing epigenetic and genetic variation in bivalves and illuminates an interesting direction for future work.

The relationship of heritable transmission of genome patterns and epigenetic resetting is another research avenue that should be explored. In mammalian systems epigenetic resetting, a clearing and re-establishment of DNA methylation with each generation, is thought to be necessary to induce

- ³⁰ pluripotency of cells (reviewed [45]). Nevertheless, there are certain loci (e.g. imprinted genes) where the clearing of epigenetic marks is incomplete resulting in meiotic inheritance of DNA methylation patterns. This type of transgenerational inheritance
- ³⁵ has been studied in plants and mammals, but to our knowledge has yet to be addressed in invertebrates. As mentioned earlier, oysters show temporal changes in the total amount of DNA methylation during embryonic development, with lower methy-
- ⁴⁰ lation in the 2–4 cell stages and increasing in morula and blastula [6]. This observation may be indicative of an epigenetic resetting event. However, characterizing epigenetic changes at finer temporal time scales are needed.
- ⁴⁵ Exploring these questions of epigenetic flexibility to environmental cues, natural variation, heritability, as well as the possibility of epigenetic resetting in bivalves will inform the direction of much larger research questions. While we are gaining a better
- ⁵⁰ understanding of invertebrate epigenetics, we certainly have a lot more to learn, which could

considerably change our comprehension of organismal and ecosystem responses to environmental change.

55

UBLIC RELEASE

Key points

- DNA methylation is found throughout the genome and is predominant in gene bodies in bivalves.
- The role of gene body DNA methylation could be dependent on the gene function and serve to both reduce stochastic transcriptional noise as well as regulate activity in a targeted manner.
- Several important research questions remain unanswered with respect to DNA methylation in bivalves related to environmental influence, relationship with genetic variation, and transgenerational inheritance.

References

- Wang S, Bao Z, Hu X, et al. Two novel elements (CFG1 and PYG1) of Mag lineage of Ty3/Gypsy retrotransposons from Zhikong scallop (*Chlamys farreri*) and Japanese scallop (*Patinopecten yessoensis*). Genetica 2008;133:37–46.
- Petrovic V, Perez-Garcia C, Pasantes JJ, et al. A GC-rich satellite DNA and karyology of the bivalve mollusk *Donax trunculus*: a dominance of GC-rich heterochromatin. *Cytogenet Genome Res* 2009;**124**:63–71.
- 3. Gavery MR, Roberts SB. DNA methylation patterns provide insight into epigenetic regulation in the Pacific oyster (*Crassostrea gigas*). *BMC Genomics* 2010;**11**:483.
- Gavery M, Roberts S. Predominant intragenic methylation is associated with gene expression characteristics in a bivalve mollusc. *PeefJ* 2013;1:e215.
- Fneich S, Dheilly N, Adema C, et al. 5-methyl-cytosine and 5-hydroxy-methyl-cytosine in the genome of *Biomphalaria* glabrata, a snail intermediate host of *Schistosoma mansoni*. *Parasit Vectors* 2013;6:167.
- Riviere G, Wu G-C, Fellous A, et al. DNA methylation is crucial for the early development in the oyster *C. gigas. Mar Biotechnol* 2013;1–15.
- Simmen MW, Bird AP. Sequence analysis of transposable elements in the sea squirt, *Ciona intestinalis*. *Mol Biol Evol* 2000;**17**:1685–93.
- 8. Zemach A, McDaniel IE, Silva P, *et al.* Genome-wide evolutionary analysis of eukaryotic DNA methylation. *Science* 2010;**328**:916–9.
- Lyko F, Foret S, Kucharski R, *et al.* The honey bee epigenomes: differential methylation of brain DNA in queens and workers. *PLoS Biol* 2010;8:e1000506.
- 10. Lechner M, Marz M, Ihling C, *et al.* The correlation of genome size and DNA methylation rate in metazoans. *Theory Biosci* 2013;**132**:47–60.
- 11. Aran D, Toperoff G, Rosenberg M, et al. Replication timing-related and gene body-specific methylation of active human genes. *Hum Mol Genet* 2011;**20**:670–80.
- Zilberman D, Gehring M, Tran RK, *et al.* Genome-wide analysis of *Arabidopsis thaliana* DNA methylation uncovers an interdependence between methylation and transcription. *Nat Genet* 2007;**39**:61–9.

AQ4

65

85

AQ5

90

100

55

AO7

60

65

85

page 6 of 6

Gavery and Roberts

- 13. Roberts SB, Gavery MR. Is there a relationship between DNA methylation and phenotypic plasticity in invertebrates? *Front Physiol* 2012;**2**:116.
- Jjingo D, Conley AB, Yi SV, *et al.* On the presence and role of human gene-body DNA methylation ABSTRACT. *Oncotarget* 2012;3:462–74.
- Bird AP. Gene number, noise reduction and biological complexity. *Tiends Genet* 1995;11:94–100.
- Huh I, Zeng J, Park T, et al. DNA methylation and transcriptional noise. *Epigenetics Chromatin* 2013;6:9.
- 17. Hedgecock D. Does variance in reproductive success limit effective population size pharine organisms? *Genetics and Evolution of Aquatic Organisms* 1994;122–34.
- 18. Li-Byarlay H, Li Y, Stroud H, et al. RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee. Proc Natl Acad Sci USA 2013;110:12750–5.
 - 19. Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. *Trends Genet* 1997;**13**: 335–40.
 - 20. Casacuberta E, González J. The impact of transposable elements in environmental adaptation. *Mol Ecol* 2013;22: 1503–17.
- Dowen RH, Pelizzola M, Schmitz RJ, et al. Widespread dynamic DNA methylation in response to biotic stress. *Proc Natl Acad Sci USA* 2012;**109**:E2183–91.
 - 22. Yu A, Lepère G, Jay F, *et al*. Dynamics and biological relevance of DNA demethylation in *Arabidopsis* antibacterial defense. *Proc Natl Acad Sci USA* 2013;**110**:2389–94.
- 30 23. Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulation of the genome. *Nat Rev Genet* 2007;8: 272–85.
 - 24. Maunakea AK, Nagarajan RP, Bilenky M, *et al.* Conserved role of intragenic DNA methylation in regulating alternative promoters. *Nature* 2010;**466**:253–7.
 - 25. Shukla S, Kavak E, Gregory M, *et al.* CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. *Nature* 2011;**479**:74–9.
- 26. Rodet F, Lelong C, Dubos M-P, *et al.* Alternative splicing
 of a single precursor mRNA generates two subtypes of
 Gonadotropin-Releasing Hormone receptor orthologues
 and their variants in the bivalve mollusc *Crassostrea gigas*. *Gene* 2008;414:1–9.
 - 27. Guévélou E, Huvet A, Sussarellu R, et al. Regulation of a
- 45 truncated isoform of AMP-activated protein kinase α (AMPKα) in response to hypoxia in the muscle of Pacific oyster *Crassostrea gigas. J Comp Physiol B* 2013;**183**: 597–611.
- Foret S, Kucharski R, Pellegrini M, *et al.* DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. *Proc Natl Acad Sci USA* 2012; 109:4968–73.

29. Rajasethupathy P, Antonov I, Sheridan R, *et al.* A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. *Cell* 2012;**149**:693–707.

30. Jones PA. The {DNA} methylation paradox. *Trends Genet* 1999;**15**:34–7.

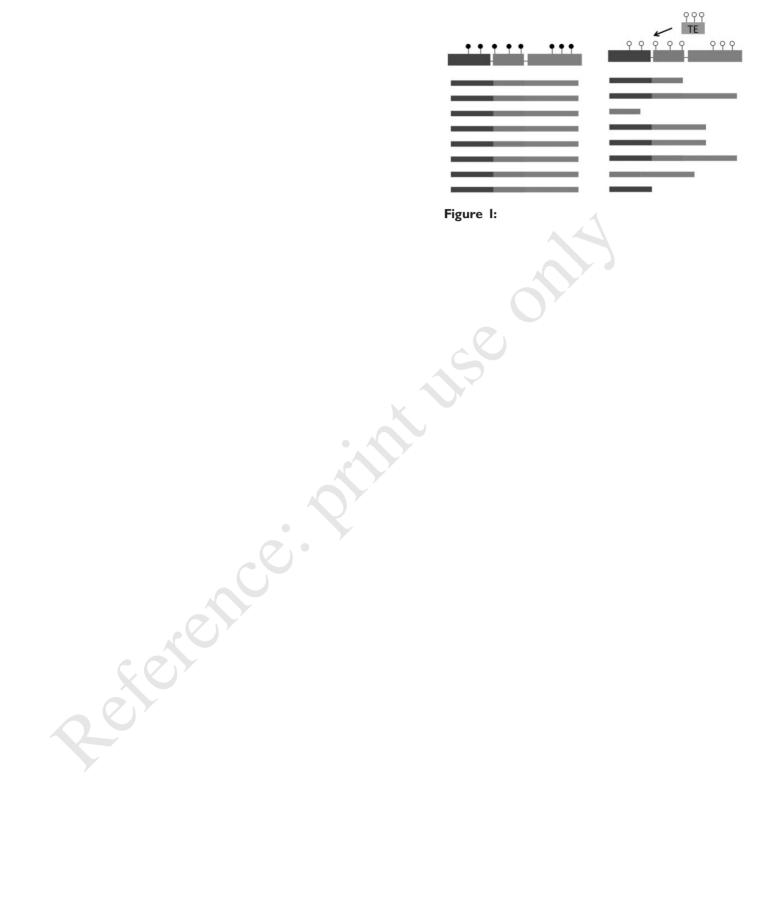
- 51. Fang X, Li L, Lou R, *et al*. Genomic data from the Pacific oyster (*Crassostrea gigas*). *GigaScience* 2012.
- 32. Chinnusamy V, Zhu J. Epigenetic regulation of stress responses in plants. *Curr Opin Plant Biol* 2009;**12**:133–9.
- 33. Navarro-Martín L, Viñas J, Ribas L, *et al.* DNA methylation of the gonadal aromatase (*cyp19a*) promoter is involved in temperature-dependent sex ratio shifts in the european sea bass. *PLoS Genet* 2011;**7**:e1002447.
- 34. Yu Y, Yang X, Wang H, *et al.* Cytosine methylation alteration in natural populations of *Leymus chinensis* induced by multiple abiotic stresses. *PLoS One* 2013;**8**:e55772.
- Kucharski R, Maleszka J, Foret S, *et al.* Nutritional control of reproductive status in honeybees via DNA methylation. 70 *Science* 2008;**319**:1827–30.
- Manikkam M, Guerrero-Bosagna C, Tracey R, et al. Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures. PLoS One 2012;7:e31901. 75
- 37. Guerrero-Bosagna C, Settles M, Lucker B, *et al*. Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. *PLoS One* 2010;**5**:e13100.
- Cubas P, Vincent C, Coen E. An epigenetic mutation responsible for natural variation in floral symmetry. *Nature* 80 1999;401:157–61.
- 39. Manning K, Tor M, Poole M, *et al.* A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. *Nat Genet* 2006;**38**:948–52.
- 40. Verhoeven KJF, Jansen JJ, van Dijk PJ, *et al.* Stress-induced DNA methylation changes and their heritability in asexual dandelions. *New Phytol* 2010;**185**:1108–18.
- Liu S, Sun K, Jiang T, *et al.* Natural epigenetic variation in the female great roundleaf bat (*Hipposideros armiger*) populations. *Mol Genet Genomics* 2012;287:643–50.
- 42. Schrey AW, Coon CAC, Grispo MT, *et al.* Epigenetic variation may compensate for decreased genetic variation with introductions: a case study using house structure was (*Passer domesticus*) on two continents. *Genet Res Int* 2012, 2012.
- Herrera CM, Bazaga P. Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. *New Phytol* 2010;**187**: 867–76.
- Jiang Q, Li Q, Yu H, *et al.* Genetic and epigenetic variation in mass selection populations of Pacific oyster *Crassostrea* gigas. Genes Genomics 2013;1–7.
- 45. Santos F, Dean W. Epigenetic reprogramming during early development in mammals. *Reproduction* 2004;**127**:643–51.

105

AQ8

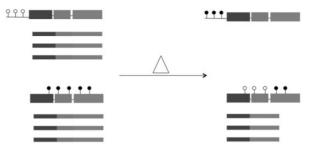
AQ6

20


35

10

5


[1–2]

[1–2]

2.2.