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Preface

R is a powerful tool for statistics, graphics, and statistical programming. It is used by
tens of thousands of people daily to perform serious statistical analyses. Itis a free, open
source system whose implementation is the collective accomplishment of many intel-
ligent, hard-working people. There are more than 2,000 available add-ons, and R is a
serious rival to all commercial statistical packages.

But R can be frustrating. It’s not obvious how to accomplish many tasks, even simple
ones. The simple tasks are easy once you know how, yet figuring out that “how” can
be maddening.

This book is full of how-to recipes, each of which solves a specific problem. The recipe
includes a quick introduction to the solution followed by a discussion that aims to
unpack the solution and give you some insight into how it works. I know these recipes
are useful and I know they work, because I use them myself.

The range of recipes is broad. It starts with basic tasks before moving on to input and
output, general statistics, graphics, and linear regression. Any significant work with R
will involve most or all of these areas.

If you are a beginner then this book will get you started faster. If you are an intermediate
user, this book is useful for expanding your horizons and jogging your memory (“How
do I do that Kolmogorov—Smirnov test again?”).

The book is not a tutorial on R, although you will learn something by studying the
recipes. It is not a reference manual, but it does contain a lot of useful information. It
is not a book on programming in R, although many recipes are useful inside R scripts.

Finally, this book is not an introduction to statistics. Many recipes assume that you are
familiar with the underlying statistical procedure, if any, and just want to know how
it’s done in R.

Xiii

www.it-ebooks.info


http://www.it-ebooks.info

The Recipes

Most recipes use one or two R functions to solve a specific problem. It’s important to
remember that I do not describe the functions in detail; rather, I describe just enough
to solve the immediate problem. Nearly every such function has additional capabilities
beyond those described here, and some have amazing capabilities. I strongly urge you
to read the function’s help page. You will likely learn something valuable.

Each recipe presents one way to solve a particular problem. Of course, there are likely
several reasonable solutions to each problem. When I knew of multiple solutions, I
generally selected the simplest one. For any given task, you can probably discover sev-
eral alternative solutions yourself. This is a cookbook, not a bible.

In particular, R has literally thousands of downloadable add-on packages, many of
which implement alternative algorithms and statistical methods. This book concen-
trates on the core functionality available through the basic distribution, so your best
source of alternative solutions may be searching for an add-on package (Recipe 1.11).

A Note on Terminology

The goal of every recipe is to solve a problem and solve it quickly. Rather than laboring
in tedious prose, I occasionally streamline the description with terminology that is
correct but not precise. A good example is the term “generic function”. I refer to
print(x) and plot(x) as generic functions because they work for many kinds of x,
handling each kind appropriately. A computer scientist would wince at my terminology
because, strictly speaking, these are not simply “functions”; they are polymorphic
methods with dynamic dispatching. But if I carefully unpacked every such technical
detail, the essential solution would be buried in the technicalities. So I just call them
functions, which I think is more readable.

Another example, taken from statistics, is the complexity surrounding the semantics
of statistical hypothesis testing. Using the strict language of probability theory would
obscure the practical application of some tests, so [ use more colloquial language when
describing each statistical test. See the “Introduction” to Chapter 9 for more about how
hypothesis tests are presented in the recipes.

My goal is to make the power of R available to a wide audience by writing readably,
not formally. I hope that experts in their respective fields will understand if my termi-
nology is occasionally informal.

Software and Platform Notes

The base distribution of R has frequent and planned releases, but the language defini-
tion and core implementation are stable. The recipes in this book should work with
any recent release of the base distribution.

xiv | Preface
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Some recipes have platform-specific considerations, and I have carefully noted them.
Those recipes mostly deal with software issues, such as installation and configuration.
As farasTknow, all other recipes will work on all three major platforms for R: Windows,
OS X, and Linux/Unix.

Other Resources

On the Web
The mother ship for all things R is the R project site. From there you can download
binaries, add-on packages, documentation, and source code as well as many other
resources.

Beyond the R project site, I recommend using an R-specific search engine—such
as Rseek, created by Sasha Goodman. You can use a generic search engine, such
as Google, but the “R” search term brings up too much extraneous stuff. See
Recipe 1.10 for more about searching the Web.

Reading blogs is a great way to learn about R and stay abreast of leading-edge
developments. There are surprisingly many such blogs, so I recommend following
two blog-of-blogs: R-bloggers, created by Tal Galili; and PlanetR. By subscribing
to their RSS feeds, you will be notified of interesting and useful articles from dozens
of websites.

R books
There are many, many books about learning and using R; listed here are a few that
[ have found useful. Note that the R project site contains an extensive bibliography
of books related to R.

I recommend An Introduction to R, by William Venables et al. (Network Theory
Limited). It covers many topics and is useful for beginners. You can download the
PDF for free from CRAN; or, better yet, buy the printed copy because the profits
are donated to the R project.

Rin a Nutshell, by Joseph Adler (O’Reilly), is the quick tutorial and reference you’ll
keep by your side. It covers many more topics than this Cookbook.

Anyone doing serious graphics work in R will want R Graphics by Paul Murrell
(Chapman & Hall/CRC). Depending on which graphics package you use, you may
also want Lattice: Multivariate Data Visualization with R by Deepayan Sarkar
(Springer) and ggplot2: Elegant Graphics for Data Analysis by Hadley Wickham
(Springer).

Modern Applied Statistics with S (4th ed.), by William Venables and Brian Ripley
(Springer), uses R to illustrate many advanced statistical techniques. The book’s
functions and datasets are available in the MASS package, which is included in the
standard distribution of R.

Preface | xv
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I’'m not wild about any book on programming in R, although new books appear
regularly. For programming, [ suggest using R in a Nutshell together with S Pro-
gramming by William Venables and Brian Ripley (Springer). I also suggest down-
loading the R Language Definition. The Definition is a work in progress, but it can
answer many of your detailed questions regarding R as a programming language.

Statistics books

You will need a good statistics textbook or reference book to accurately interpret
the statistical tests performed in R. There are many such fine books—far too many
for me to recommend any one above the others.

For learning statistics, a great choice is Using R for Introductory Statistics by John
Verzani (Chapman & Hall/CRC). It teaches statistics and R together, giving you
the necessary computer skills to apply the statistical methods.

Increasingly, statistics authors are using R to illustrate their methods. If you work
in a specialized field, then you will likely find a useful and relevant book in the R
project bibliography.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

&

Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

xvi | Preface
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Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “R Cookbook by Paul Teetor. Copyright
2011 Paul Teetor, 978-0-596-80915-7.”

If you feel your use of code examples falls outside fair use or the permission just de-
scribed, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Saf Safari Books Online is an on-demand digital library that lets you easily
ararl  oe.rch over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, get exclusive access to manuscripts in development, and post feed-
back for the authors. Copy and paste code samples, organize your favorites, download
chapters, bookmark key sections, create notes, print out pages, and benefit from many
other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. For full
digital access to it and to other books on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

Preface | xvii
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We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596809157
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1
Getting Started and Getting Help

Introduction

This chapter sets the groundwork for the other chapters. It explains how to download,
install, and run R.

More importantly, it also explains how to get answers to your questions. The R com-
munity provides a wealth of documentation and help. You are not alone. Here are some
common sources of help:

Local, installed documentation
When you install R on your computer, a mass of documentation is also installed.
You can browse the local documentation (Recipe 1.6) and search it (Recipe 1.8).
[ am amazed how often I search the Web for an answer only to discover it was
already available in the installed documentation.

Task views
A task view describes packages that are specific to one area of statistical work, such
as econometrics, medical imaging, psychometrics, or spatial statistics. Each task
view is written and maintained by an expert in the field. There are 28 such task
views, so there is likely to be one or more for your areas of interest. I recommend
that every beginner find and read at least one task view in order to gain a sense of
R’s possibilities (Recipe 1.11).

Package documentation
Most packages include useful documentation. Many also include overviews and
tutorials, called vignettes in the R community. The documentation is kept with the
packages in package repositories, such as CRAN, and it is automatically installed
on your machine when you install a package.

Mailing lists
Volunteers have generously donated many hours of time to answer beginners’
questions that are posted to the R mailing lists. The lists are archived, so you can
search the archives for answers to your questions (Recipe 1.12).

www.it-ebooks.info
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Question and answer (Q&A) websites
On a Q&A site, anyone can post a question, and knowledgeable people can re-
spond. Readers vote on the answers, so the best answers tend to emerge over time.
All this information is tagged and archived for searching. These sites are a cross
between a mailing list and a social network; the Stack Overflow site is a good
example.

The Web
The Web is loaded with information about R, and there are R-specific tools for
searching it (Recipe 1.10). The Web is a moving target, so be on the lookout for
new, improved ways to organize and search information regarding R.

1.1 Downloading and Installing R

Problem

You want to install R on your computer.

Solution

Windows and OS X users can download R from CRAN, the Comprehensive R Archive
Network. Linux and Unix users can install R packages using their package management
tool:
Windows

1. Open http://www.r-project.org/ in your browser.

2. Click on “CRAN”. You'll see a list of mirror sites, organized by country.

3. Select a site near you.

4. Click on “Windows” under “Download and Install R”.

5. Click on “base”.

6. Click on the link for downloading the latest version of R (an .exe file).

7. When the download completes, double-click on the .exe file and answer the
usual questions.

0S X

1. Open http://www.r-project.org/ in your browser.

2. Click on “CRAN”. You'll see a list of mirror sites, organized by country.

3. Select a site near you.

4. Click on “MacOS X”.

5. Click on the .pkg file for the latest version of R, under “Files:”, to download it.

6. When the download completes, double-click on the .pkg file and answer the

usual questions.
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Linux or Unix
The major Linux distributions have packages for installing R. Here are some
examples:

Distribution Package name
Ubuntu or Debian  r-base
Red Hator Fedora  R.i386

Suse R-base

Use the system’s package manager to download and install the package. Normally,
you will need the root password or sudo privileges; otherwise, ask a system ad-
ministrator to perform the installation.

Discussion

Installing R on Windows or OS X is straightforward because there are prebuilt binaries
for those platforms. You need only follow the preceding instructions. The CRAN Web
pages also contain links to installation-related resources, such as frequently asked
questions (FAQs) and tips for special situations (“How do I install R when using Win-
dows Vista?”) that you may find useful.

Theoretically, you can install R on Linux or Unix in one of two ways: by installing a
distribution package or by building it from scratch. In practice, installing a package is
the preferred route. The distribution packages greatly streamline both the initial in-
stallation and subsequent updates.

On Ubuntu or Debian, use apt-get to download and install R. Run under sudo to have
the necessary privileges:

$ sudo apt-get install r-base

On Red Hat or Fedora, use yum:
$ sudo yum install R.i386

Most platforms also have graphical package managers, which you might find more
convenient.

Beyond the base packages, I recommend installing the documentation packages, too.
On my Ubuntu machine, for example, I installed r-base-html (because I like browsing
the hyperlinked documentation) as well as r-doc-html, which installs the important R
manuals locally:

$ sudo apt-get install r-base-html r-doc-html
Some Linux repositories also include prebuilt copies of R packages available on CRAN.

I don’t use them because I'd rather get my software directly from CRAN itself, which
usually has the freshest versions.
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In rare cases, you may need to build R from scratch. You might have an obscure, un-
supported version of Unix; or you might have special considerations regarding per-
formance or configuration. The build procedure on Linux or Unix is quite standard.
Download the tarball from the home page of your CRAN mirror; it’s called something
like R-2.12.1.tar.gz, except the “2.12.1” will be replaced by the latest version. Unpack
the tarball, look for a file called INSTALL, and follow the directions.

See Also

R in a Nutshell (O’Reilly) contains more details of downloading and installing R, in-
cluding instructions for building the Windows and OS X versions. Perhaps the ultimate
guide is the one entitled R Installation and Administration, available on CRAN, which
describes building and installing R on a variety of platforms.

This recipe is about installing the base package. See Recipe 3.9 for installing add-on
packages from CRAN.

1.2 Starting R

Problem

You want to run R on your computer.

Solution

Windows
Click on Start - All Programs — R; or double-click on the R icon on your desktop
(assuming the installer created an icon for you).

0S X
Either click on the icon in the Applications directory or put the R icon on the dock
and click on the icon there. Alternatively, you can just type R on a Unix command
line in a shell.

Linux or Unix
Start the R program from the shell prompt using the R command (uppercase R).

Discussion

How you start R depends upon your platform.

Starting on Windows

When you start R, it opens a new window. The window includes a text pane, called
the R Console, where you enter R expressions (see Figure 1-1).
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Resize  Windows

R Graphics: Device 2 (ACTIVE
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> plotix, 7) w1
& T T T T T T

Figure 1-1. R on Windows

There is an odd thing about the Windows Start menu for R. Every time you upgrade
to a new version of R, the Start menu expands to contain the new version while keeping
all the previously installed versions. So if you’ve upgraded, you may face several choices
suchas “R2.8.17,“R2.9.1”, “R 2.10.1”, and so forth. Pick the newest one. (You might
also consider uninstalling the older versions to reduce the clutter.)

Using the Start menu is cumbersome, so I suggest starting R in one of two other ways:
by creating a desktop shortcut or by double-clicking on your .RData file.

The installer may have created a desktop icon. If not, creating a shortcut is easy: follow
the Start menu to the R program, but instead of left-clicking to run R, press and hold
your mouse’s right button on the program name, drag the program name to your desk-
top, and release the mouse button. Windows will ask if you want to Copy Here or Move
Here. Select Copy Here, and the shortcut will appear on your desktop.

Another way to start R is by double-clicking on a.RData file in your working directory.
This is the file that R creates to save your workspace. The first time you create a direc-
tory, start R and change to that directory. Save your workspace there, either by exiting
or using the save.image function. That will create the .RData file. Thereafter, you can
simply open the directory in Windows Explorer and then double-click on the .RData
file to start R.

Perhaps the most baffling aspect of starting R on Windows is embodied in a simple
question: When R starts, what is the working directory? The answer, of course, is that
“it depends”:
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* If you start R from the Start menu, the working directory is normally either
C:\Documents and Settings\<username>\My Documents (Windows XP) or C:\Users
\<username>\Documents (Windows Vista, Windows 7). You can override this de-
fault by setting the R_USER environment variable to an alternative directory path.

e If you start R from a desktop shortcut, you can specify an alternative startup
directory that becomes the working directory when R is started. To specify the
alternative directory, right-click on the shortcut, select Properties, enter the direc-
tory path in the box labeled “Start in”, and click OK.

* Starting R by double-clicking on your .RData file is the most straightforward
solution to this little problem. R will automatically change its working directory
to be the file’s directory, which is usually what you want.

In any event, you can always use the getwd function to discover your current working
directory (Recipe 3.1).

Just for the record, Windows also has a console version of R called Rterm.exe. You’ll
find it in the bin subdirectory of your R installation. It is much less convenient than the
graphic user interface (GUI) version, and I never use it. I recommend it only for batch
(noninteractive) usage such as running jobs from the Windows scheduler. In this book,
[ assume you are running the GUI version of R, not the console version.

Starting on 0S X

Run R by clicking the R icon in the Applications folder. (If you use R frequently, you
can drag it from the folder to the dock.) That will run the GUI version, which is some-
what more convenient than the console version. The GUI version displays your working
directory, which is initially your home directory.

OS X also lets you run the console version of R by typing R at the shell prompt.

Starting on Linux and Unix

Start the console version of R from the Unix shell prompt simply by typingR, the name
of the program. Be careful to type an uppercase R, not a lowercase r.

The R program has a bewildering number of command line options. Use the --help
option to see the complete list.

See Also

See Recipe 1.4 for exiting from R, Recipe 3.1 for more about the current working
directory, Recipe 3.2 for more about saving your workspace, and Recipe 3.11 for sup-
pressing the start-up message. See Chapter 2 of R in a Nutshell.
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1.3 Entering Commands

Problem

You've started R, and you’ve got a command prompt. Now what?

Solution

Simply enter expressions at the command prompt. R will evaluate them and print (dis-
play) the result. You can use command-line editing to facilitate typing.

Discussion
R prompts you with “>”. To get started, just treat R like a big calculator: enter an
expression, and R will evaluate the expression and print the result:
> 141
[1] 2
The computer adds one and one, giving two, and displays the result.
The [1] before the 2 might be confusing. To R, the result is a vector, even though it has

only one element. R labels the value with [1] to signify that this is the first element of
the vector...which is not surprising, since it’s the only element of the vector.

R will prompt you for input until you type a complete expression. The expression
max(1,3,5) is a complete expression, so R stops reading input and evaluates what it’s
got:

> max(1,3,5)
[1] 5

In contrast, “max(1,3,” is an incomplete expression, so R prompts you for more input.
The prompt changes from greater-than (>) to plus (+), letting you know that R expects
more:

> max(1,3,
+5)
[1] 5

It’s easy to mistype commands, and retyping them is tedious and frustrating. So R
includes command-line editing to make life easier. It defines single keystrokes that let
you easily recall, correct, and reexecute your commands. My own typical command-
line interaction goes like this:

1. T'enter an R expression with a typo.

2. R complains about my mistake.

3. I press the up-arrow key to recall my mistaken line.

4. T use the left and right arrow keys to move the cursor back to the error.

5. T use the Delete key to delete the offending characters.
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6. I type the corrected characters, which inserts them into the command line.

7. I press Enter to reexecute the corrected command.

That’s just the basics. R supports the usual keystrokes for recalling and editing com-
mand lines, as listed in Table 1-1.

Table 1-1. Keystrokes for command-line editing

Labeledkey  Ctrl-key combination  Effect

Up arrow Curl-P Recall previous command by moving backward through the history of commands.

Downarrow  Ctrl-N Move forward through the history of commands.

Backspace Ctrl-H Delete the character to the left of cursor.

Delete (Del) Ctrl-D Delete the character to the right of cursor.

Home Ctrl-A Move cursor to the start of the line.

End Ctrl-E Move cursor to the end of the line.

Right arrow Ctrl-F Move cursor right (forward) one character.

Left arrow (trl-B Move cursor left (back) one character.
Ctrl-K Delete everything from the cursor position to the end of the line.
Ctrl-U (lear the whole darn line and start over.

Tab Name completion (on some platforms).

On Windows and OS X, you can also use the mouse to highlight commands and then
use the usual copy and paste commands to paste text into a new command line.

See Also

See Recipe 2.13. From the Windows main menu, follow Help - Console for a complete
list of keystrokes useful for command-line editing.

1.4 Exiting from R

Problem

You want to exit from R.

Solution

Windows
Select File - Exit from the main menu; or click on the red X in the upper-right
corner of the window frame.
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OS X
Press CMD-q (apple-q); or click on the red X in the upper-left corner of the window
frame.

Linux or Unix
At the command prompt, press Ctrl-D.

On all platforms, you can also use the q function (as in quit) to terminate the program.
> q0)

Note the empty parentheses, which are necessary to call the function.

Discussion
Whenever you exit, R asks if you want to save your workspace. You have three choices:

* Save your workspace and exit.

* Don’t save your workspace, but exit anyway.

* Cancel, returning to the command prompt rather than exiting.
If you save your workspace, then R writes it to a file called .RData in the current working
directory. This will overwrite the previously saved workspace, if any, so don’t save if

you don’t like the changes to your workspace (e.g., if you have accidentally erased
critical data).

See Also

See Recipe 3.1 for more about the current working directory and Recipe 3.2 for more
about saving your workspace. See Chapter 2 of R in a Nutshell.

1.5 Interrupting R

Problem

You want to interrupt a long-running computation and return to the command prompt
without exiting R.

Solution
Windows or OS X
Either press the Esc key or click on the Stop-sign icon.

Linux or Unix
Press Ctrl-C. This will interrupt R without terminating it.
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Discussion

Interrupting R can leave your variables in an indeterminate state, depending upon how
far the computation had progressed. Check your workspace after interrupting.

See Also
See Recipe 1.4.

1.6 Viewing the Supplied Documentation

Problem

You want to read the documentation supplied with R.

Solution

Use the help.start function to see the documentation’s table of contents:
> help.start()

From there, links are available to all the installed documentation.

Discussion

The base distribution of R includes a wealth of documentation—Iliterally thousands of
pages. When you install additional packages, those packages contain documentation
that is also installed on your machine.

It is easy to browse this documentation via the help.start function, which opens a
window on the top-level table of contents; see Figure 1-2.

The two links in the Reference section are especially useful:

Packages
Click here to see a list of all the installed packages, both in the base packages and
the additional, installed packages. Click on a package name to see a list of its func-
tions and datasets.

Search Engine & Keywords
Click here to access a simple search engine, which allows you to search the docu-
mentation by keyword or phrase. There is also a list of common keywords,
organized by topic; click one to see the associated pages.

See Also

The local documentation is copied from the R Project website, which may have updated
documents.
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License Frequently Asked Questions Thanks
NEWS

Done

Figure 1-2. Documentation table of contents

1.7 Getting Help on a Function

Problem

You want to know more about a function that is installed on your machine.

Solution

Use help to display the documentation for the function:

> help(functionname)

Use args for a quick reminder of the function arguments:

> args(functionname)

Use example to see examples of using the function:

> example(functionname)

Discussion

[ present many R functions in this book. Every R function has more bells and whistles
than I can possibly describe. If a function catches your interest, I strongly suggest read-
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ing the help page for that function. One of its bells or whistles might be very useful to
you.

Suppose you want to know more about the mean function. Use the help function like
this:

> help(mean)

This will either open a window with function documentation or display the documen-
tation on your console, depending upon your platform. A shortcut for the help com-
mand is to simply type ? followed by the function name:

> ?mean

Sometimes you just want a quick reminder of the arguments to a function: What are
they, and in what order do they occur? Use the args function:

> args(mean)

function (x, ...)

NULL

> args(sd)

function (x, na.rm = FALSE)

NULL

The first line of output from args is a synopsis of the function call. For mean, the synopsis
shows one argument, x, which is a vector of numbers. For sd, the synopsis shows the
same vector, x, and an optional argument called na.rm. (You can ignore the second line
of output, which is often just NULL.)

Most documentation for functions includes examples near the end. A cool feature of
R is that you can request that it execute the examples, giving you a little demonstration
of the function’s capabilities. The documentation for the mean function, for instance,
contains examples, but you don’t need to type them yourself. Just use the example
function to watch them run:

> example(mean)
mean> x <- c(0:10, 50)
mean> xm <- mean(x)

mean> c(xm, mean(x, trim = 0.1))
[1] 8.75 5.50

mean> mean(USArrests, trim = 0.2)
Murder Assault UrbanPop Rape
7.42  167.60 66.20 20.16

The user typed example(mean). Everything else was produced by R, which executed the
examples from the help page and displayed the results.
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See Also

See Recipe 1.8 for searching for functions and Recipe 3.5 for more about the search
path.

1.8 Searching the Supplied Documentation

Problem

You want to know more about a function that is installed on your machine, but the
help function reports that it cannot find documentation for any such function.

Alternatively, you want to search the installed documentation for a keyword.

Solution

Use help.search to search the R documentation on your computer:
> help.search("pattern™)

A typical pattern is a function name or keyword. Notice that it must be enclosed in
quotation marks.

For your convenience, you can also invoke a search by using two question marks (in
which case the quotes are not required):

> Npattern

Discussion

You may occasionally request help on a function only to be told R knows nothing about
it:
> help(adf.test)

No documentation for 'adf.test' in specified packages and libraries:
you could try 'help.search("adf.test")'

This can be frustrating if you know the function is installed on your machine. Here the
problem is that the function’s package is not currently loaded, and you don’t know
which package contains the function. It’s akind of catch-22 (the error message indicates
the package is not currently in your search path, so R cannot find the help file; see
Recipe 3.5 for more details).

The solution is to search all your installed packages for the function. Just use the
help.search function, as suggested in the error message:

> help.search("adf.test")
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The search will produce a listing of all packages that contain the function:

Help files with alias or concept or title matching 'adf.test' using
regular expression matching:

tseries::adf.test Augmented Dickey-Fuller Test
Type '?PKG::FO0' to inspect entry 'PKG::FOO TITLE'.

The following output, for example, indicates that the tseries package contains the
adf.test function. You can see its documentation by explicitly telling help which pack-
age contains the function:

> help(adf.test, package="tseries")
Alternatively, you can insert the tseries package into your search list and repeat

the original help command, which will then find the function and display the
documentation.

You can broaden your search by using keywords. R will then find any installed docu-
mentation that contains the keywords. Suppose you want to find all functions that
mention the Augmented Dickey—Fuller (ADF) test. You could search on a likely pattern:

> help.search("dickey-fuller")

On my machine, the result looks like this because I've installed two additional packages
(fUnitRoots and urca) that implement the ADF test:

Help files with alias or concept or title matching 'dickey-fuller' using
fuzzy matching:

fUnitRoots: :DickeyFullerPValues

Dickey-Fuller p Values
tseries::adf.test Augmented Dickey-Fuller Test
urca::ur.df Augmented-Dickey-Fuller Unit Root Test

Type '?PKG::FO0' to inspect entry 'PKG::FOO TITLE'.

See Also

You can also access the local search engine through the documentation browser; see
Recipe 1.6 for how this is done. See Recipe 3.5 for more about the search path and
Recipe 4.4 for getting help on functions.

1.9 Getting Help on a Package

Problem

You want to learn more about a package installed on your computer.
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Solution

Use the help function and specify a package name (without a function name):

> help(package="packagename")

Discussion

Sometimes you want to know the contents of a package (the functions and datasets).
This is especially true after you download and install a new package, for example. The
help function can provide the contents plus other information once you specify the
package name.

This call to help will display the information for the tseries package, a standard pack-
age in the base distribution:

> help(package="tseries")
The information begins with a description and continues with an index of functions
and datasets. On my machine, the first few lines look like this:

Information on package 'tseries’

Description:

Package: tseries

Version: 0.10-22

Date: 2009-11-22

Title: Time series analysis and computational finance

Author: Compiled by Adrian Trapletti
<a.trapletti@swissonline.ch>

Maintainer: Kurt Hornik <Kurt.Hornik@R-project.org>

Description: Package for time series analysis and computational
finance

Depends: R (>= 2.4.0), quadprog, stats, zoo

Suggests: its

Imports: graphics, stats, utils

License: GPL-2

Packaged: 2009-11-22 19:03:45 UTC; hornik

Repository: CRAN

Date/Publication:  2009-11-22 19:06:50

Built: R 2.10.0; 1i386-pc-mingw32; 2009-12-01 19:32:47 UTC;
windows

Index:

NelPlo Nelson-Plosser Macroeconomic Time Series

USeconomic U.S. Economic Variables

adf.test Augmented Dickey-Fuller Test

arma Fit ARMA Models to Time Series

. (etc.)
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Some packages also include vignettes, which are additional documents such as intro-
ductions, tutorials, or reference cards. They are installed on your computer as part of
the package documentation when you install the package. The help page for a package
includes a list of its vignettes near the bottom.

You can see a list of all vignettes on your computer by using the vignette function:
> vignette()

You can see the vignettes for a particular package by including its name:
> vignette(package="packagename")

Each vignette has a name, which you use to view the vignette:

> vignette("vignettename")

See Also

See Recipe 1.7 for getting help on a particular function in a package.

1.10 Searching the Web for Help

Problem

You want to search the Web for information and answers regarding R.

Solution

Inside R, use the RSiteSearch function to search by keyword or phrase:
> RSiteSearch("key phrase")
Inside your browser, try using these sites for searching:
http://rseek.org
This is a Google custom search that is focused on R-specific websites.

http://stackoverflow.com/
Stack Overflow is a searchable Q&A site oriented toward programming issues such
as data structures, coding, and graphics.

http://stats.stackexchange.com/
The Statistical Analysis area on Stack Exchange is also a searchable Q&A site, but
it is oriented more toward statistics than programming.

Discussion

The RSiteSearch function will open a browser window and direct it to the search engine
on the R Project website. There you will see an initial search that you can refine. For
example, this call would start a search for “canonical correlation”:

> RSiteSearch("canonical correlation")
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This is quite handy for doing quick web searches without leaving R. However, the
search scope is limited to R documentation and the mailing-list archives.

The rseek.org site provides a wider search. Its virtue is that it harnesses the power of
the Google search engine while focusing on sites relevant to R. That eliminates the
extraneous results of a generic Google search. The beauty of rseek.org is that it organizes
the results in a useful way.

Figure 1-3 shows the results of visiting rseek.org and searching for “canonical correla-
tion”. The left side of the page shows general results for search R sites. The right side
is a tabbed display that organizes the search results into several categories:

* Introductions

* Task Views

* Support Lists

¢ Functions

* Books

* Blogs

* Related Tools

80 & Rseck ject Search Engine - Mazilla Firefox

] L ¢ G | httpeiwww.rseck ong/7on=010923144343702596753% 3aboaz Lreyxddanewwindow=16qs v | [2]¥

| @ Rseek.arg Rproject Search Eng... 4

canonical comelation | Search |

Resuits 1 - 10 for canonical (0. Conas) i Task Views Suppord Lists  Functions Books Dlogs  Related Tools
5 =1 for
CRAN Task View: Multivariate Statistcs Cooghe™ carcen): canonical correlaion. Graphics piil, ba-punu Doxplolg, &Iumu s basic
Canonical Corelation: cancor) In S1als provices cancnioal Custom semen  PIOLS matpiol): malrix plol llul:\'plullu] scatterplols .
‘correlation. kermial uses kemel methoos 1 povide robust canonical PR -O{ECH. gy CoC COMRBYrefC A

oMM M KCCR) Eactonal meshods: Araund Priocipal Component Analysis (PGA)
L rist Jan B, 2007 ... Canonical snaysis. Kenel methods. Neural petworks .... For instance, one
CAN ASSUME [NAL the COrrelMIONS Detween the relums IS due 10 ..

R: Canonical Comelation Analysis 200nek?. tree ATUNIXUMR RIS, T
Canonical correlation analysis, filkming Brian MeArde's unpublished graduate

COUMSE NolEs. PUS IMprovements 1o aliw he calculations in the case of very .. An Ingmaction 10 K
.ot s AR PP B gANTRMAC CorA, heml 0 Eher Bl And valiely CARONICA CONaAts, Snch Somotimes these give addeional
. Courelation of Parameter ESimanes. ..
et oo imansls/Reintro, pdt

wor) Package 'CCA'

File Formal. POFfAdube Aciobat - Ouick View

By | Ganzalaz

it inchudes & an.wsu: ta... The
funcoon pmn-ms Canonical conun-m 0 A5 16 ORI

B: Canonical Comelation Analysis
Jan 52009 ... Cananical Comelanon analyss [CCAJ &5 2 10m of inear subspace
analysts, ard IVONves T Erojecion of fw Seis of veciorns (e, ...

FoF) Packane yhat

File Format: PDF/Aobe Acrotat - Quick Vi

By K Nimen - 2000

Dec 10, 2009 ... Buts, C. T, (2008). yacca: Yel Ancther Canonical Correlation
Analysis Package. R package version 1.1 Mood, A M, (1968) Macro-ansysis of ...

R: Kemel Canonical Correlation Analysis

Tre kemel version of canonical correlation analysis. Kemel Canonleal Corralation .
Done

Figure 1-3. Search results from rseek.org
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If you click on the Introductions tab, for example, you’ll find tutorial material. The
Task Views tab will show any Task View that mentions your search term. Likewise,
clicking on Functions will show links to relevant R functions. This is a good way to
zero in on search results.

Stack Overflow is a so-called Q&A site, which means that anyone can submit a question
and experienced users will supply answers—often there are multiple answers to each
question. Readers vote on the answers, so good answers tend to rise to the top. This
creates a rich database of Q&A dialogs, which you can search. Stack Overflow is
strongly problem oriented, and the topics lean toward the programming side of R.

Stack Overflow hosts questions for many programming languages; therefore, when
entering a term into their search box, prefix it with “[r]” to focus the search on questions
tagged for R. For example, searching via “[r] standard error” will select only the ques-
tions tagged for R and will avoid the Python and C++ questions.

Stack Exchange (not Overflow) has a Q&A area for Statistical Analysis. The area is
more focused on statistics than programming, so use this site when seeking answers
that are more concerned with statistics in general and less with R in particular.

See Also

If your search reveals a useful package, use Recipe 3.9 to install it on your machine.

1.11 Finding Relevant Functions and Packages

Problem

Of the 2,000+ packages for R, you have no idea which ones would be useful to you.

Solution

* Visit the list of task views at http://cran.r-project.org/web/views/. Find and read the
task view for your area, which will give you links to and descriptions of relevant
packages. Or visit http://rseek.org, search by keyword, click on the Task Views tab,
and select an applicable task view.

* Visit crantastic and search for packages by keyword.

* To find relevant functions, visit http://rseek.org, search by name or keyword, and
click on the Functions tab.

Discussion

This problem is especially vexing for beginners. You think R can solve your problems,
but you have no idea which packages and functions would be useful. A common
question on the mailing lists is: “Is there a package to solve problem X?” That is the
silent scream of someone drowning in R.
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As of this writing, there are more than 2,000 packages available for free download from
CRAN. Each package has a summary page with a short description and links to the
package documentation. Once you’ve located a potentially interesting package, you
would typically click on the “Reference manual” link to view the PDF documentation
with full details. (The summary page also contains download links for installing the
package, but you’ll rarely install the package that way; see Recipe 3.9.)

Sometimes you simply have a generic interest—such as Bayesian analysis, economet-
rics, optimization, or graphics. CRAN contains a set of task view pages describing
packages that may be useful. A task view is a great place to start since you get an
overview of what’s available. You can see the list of task view pages at http://cran.r
-project.org/web/views/ or search for them as described in the Solution.

Suppose you happen to know the name of a useful package—say, by seeing it men-
tioned online. A complete, alphabetical list of packages is available at http://cran.r
-project.org/web/packages/ with links to the package summary pages.

See Also

You can download and install an R package called sos that provides powerful other
ways to search for packages; see the vignette at http://cran.r-project.org/web/packages/
sos/vignettes/sos.pdf.

1.12 Searching the Mailing Lists

Problem

You have a question, and you want to search the archives of the mailing lists to see
whether your question was answered previously.

Solution

* Open http://rseek.org in your browser. Search for a keyword or other search term
from your question. When the search results appear, click on the “Support Lists”

tab.

* You can perform a search within R itself. Use the RSiteSearch function to initiate
a search:

> RSiteSearch("keyphrase")

The initial search results will appear in a browser. Under “Target”, select the
R-help sources, clear the other sources, and resubmit your query.
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Discussion

This recipe is really just an application of Recipe 1.10. But it’s an important application
because you should search the mailing list archives before submitting a new question
to the list. Your question has probably been answered before.

See Also

CRAN has a list of additional resources for searching the Web; see http://cran.r-project
.org/search.html.

1.13 Submitting Questions to the Mailing Lists

Problem

You want to submit a question to the R community via the R-help mailing list.

Solution

The Mailing Lists page contains general information and instructions for using the R-
help mailing list. Here is the general process:

1. Subscribe to the R-help list at the Main R Mailing List.
2. Read the Posting Guide for instructions on writing an effective submission.

3. Write your question carefully and correctly. If appropriate, include a minimal self-
reproducing example so that others can reproduce your error or problem.

4. Mail your question to r-help@r-project.org.

Discussion

The R mailing list is a powerful resource, but please treat it as a last resort. Read the
help pages, read the documentation, search the help list archives, and search the Web.
It is most likely that your question has already been answered. Don’t kid yourself: very
few questions are unique.

After writing your question, submitting it is easy. Just mail it to r-help@r-project.org.
You must be a list subscriber, however; otherwise your email submission may be
rejected.

Your question might arise because your R code is causing an error or giving unexpected
results. In that case, a critical element of your question is the minimal self-contained
example:

Minimal
Construct the smallest snippet of R code that displays your problem. Remove
everything that is irrelevant.
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Self-contained
Include the data necessary to exactly reproduce the error. If the list readers can’t
reproduce it, they can’t diagnose it. For complicated data structures, use the
dump function to create an ASCII representation of your data and include it in your
message.

Including an example clarifies your question and greatly increases the probability of
getting a useful answer.

There are actually several mailing lists. R-help is the main list for general questions.
There are also many special interest group (SIG) mailing lists dedicated to particular
domains such as genetics, finance, R development, and even R jobs. You can see the
full list at https://stat.ethz.ch/mailman/listinfo. If your question is specific to one such
domain, you’ll get a better answer by selecting the appropriate list. As with R-help,
however, carefully search the SIG list archives before submitting your question.

See Also

An excellent essay by Eric Raymond and Rick Moen is entitled “How to Ask Questions
the Smart Way”. I suggest that you read it before submitting any question.
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CHAPTER 2
Some Basics

Introduction

The recipes in this chapter lie somewhere between problem-solving ideas and tutorials.
Yes, they solve common problems, but the Solutions showcase common techniques
and idioms used in most R code, including the code in this Cookbook. If you are new
to R, I suggest skimming this chapter to acquaint yourself with these idioms.

2.1 Printing Something

Problem

You want to display the value of a variable or expression.

Solution

If you simply enter the variable name or expression at the command prompt, R will
print its value. Use the print function for generic printing of any object. Use the cat
function for producing custom formatted output.

Discussion

[t’s very easy to ask R to print something: just enter it at the command prompt:

> pi

[1] 3.141593
> sqrt(2)
[1] 1.414214

When you enter expressions like that, R evaluates the expression and then implicitly
calls the print function. So the previous example is identical to this:
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> print(pi)

[1] 3.1241593

> print(sqrt(2))
[1] 1.414214

The beauty of print is that it knows how to format any R value for printing, including
structured values such as matrices and lists:

> print(matrix(c(1,2,3,4), 2, 2))

(1] [,2]
[1,] 1 3
(2] 2 4
> print(list("a","b","c"))
[[1]]
[1] "a"
[[2]]
[2] "
[[3]]
[2] "

This is useful because you can always view your data: just print it. You needn’t write
special printing logic, even for complicated data structures.

The print function has a significant limitation, however: it prints only one object at a
time. Trying to print multiple items gives this mind-numbing error message:
> print("The zero occurs at", 2*pi, "radians.")

Error in print.default("The zero occurs at", 2 * pi, "radians.") :
unimplemented type ‘character' in 'aslogical’

The only way to print multiple items is to print them one at a time, which probably
isn’t what you want:

> print("The zero occurs at"); print(2*pi); print(“"radians")

[1] "The zero occurs at"

[1] 6.283185
[1] "radians"

The cat function is an alternative to print that lets you combine multiple items into a
continuous output:

> cat("The zero occurs at", 2*pi, "radians.", "\n")
The zero occurs at 6.283185 radians.

Notice that cat puts a space between each item by default. You must provide a newline
character (\n) to terminate the line.

The cat function can print simple vectors, too:

> fib <- c(0,1,1,2,3,5,8,13,21,34)
> cat("The first few Fibonacci numbers are:", fib, "...\n")
The first few Fibonacci numbers are: 0112 3 5 8 13 21 34 ...
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Using cat gives you more control over your output, which makes it especially useful in
R scripts. A serious limitation, however, is that it cannot print compound data struc-
tures such as matrices and lists. Trying to cat them only produces another mind-
numbing message:
> Cat(list(llall’Ilbll’llcll))
Error in cat(list(...), file, sep, fill, labels, append) :
argument 1 (type 'list') cannot be handled by 'cat'

See Also

See Recipe 4.2 for controlling output format.

2.2 Setting Variables

Problem

You want to save a value in a variable.

Solution

Use the assignment operator (<-). There is no need to declare your variable first:

> X <-3

Discussion

Using R in “calculator mode” gets old pretty fast. Soon you will want to define variables
and save values in them. This reduces typing, saves time, and clarifies your work.

There is no need to declare or explicitly create variables in R. Just assign a value to the
name and R will create the variable:

> x <3

>y <-4

> z <- sqrt(x"2 + y*2)

> print(z)

[1] 5
Notice that the assignment operator is formed from a less-than character (<) and a
hyphen (-) with no space between them.

When you define a variable at the command prompt like this, the variable is held in
your workspace. The workspace is held in the computer’s main memory but can be
saved to disk when you exit from R. The variable definition remains in the workspace
until you remove it.

R is a dynamically typed language, which means that we can change a variable’s data
type at will. We could set x to be numeric, as just shown, and then turn around and
immediately overwrite that with (say) a vector of character strings. R will not complain:
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> X <=3

> print(x)

[1] 3

> x <- c("fee", "fie", "foe", "fum")

> print(x)

[1] l|feell llfiell llfoell llfumll
In some R functions you will see assignment statements that use the strange-looking
assignment operator <<-:

X <<- 3
That forces the assignment to a global variable rather than a local variable.

In the spirit of full disclosure, T will reveal that R also supports two other forms of
assignment statements. A single equal sign (=) can be used as an assignment operator
at the command prompt. A rightward assignment operator (->) can be used anywhere
the leftward assignment operator (<-) can be used:

> foo = 3

> print(foo)
[1] 3

> 5 -> fum
> print(fum)
[1] 5

These forms are never used in this book, and I recommend that you avoid them. The
equals-sign assignment is easily confused with the test for equality. The rightward as-
signment is just too unconventional and, worse, becomes difficult to read when the
expression is long.

See Also
See Recipes 2.4, 2.14, and 3.2. See also the help page for the assign function.

2.3 Listing Variables

Problem

You want to know what variables and functions are defined in your workspace.

Solution

Use the 1s function. Use 1s.str for more details about each variable.

Discussion

The 1s function displays the names of objects in your workspace:
> X <= 10
>y < 50
> z <- c("three", "blind", "mice"
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> f <- function(n,p) sqrt(p*(1-p)/n)
> 1s()
[1] ||-FI| IIX" Ilyll |IZI|

Notice that 1s returns a vector of character strings in which each string is the name of
one variable or function. When your workspace is empty, 1s returns an empty vector,
which produces this puzzling output:

> 1s()
character(0)

That is R’s quaint way of saying that 1s returned a zero-length vector of strings; that
is, it returned an empty vector because nothing is defined in your workspace.

If you want more than just a list of names, try 1s.str; this will also tell you something
about each variable:

> 1s.str()

f : function (n, p)

X : num 10

y @ num 50

z ¢ chr [1:3] "three" "blind" "mice"

The function is called 1s.str because it is both listing your variables and applying the
str function to them, showing their structure (Recipe 12.15).

Ordinarily, 1s does not return any name that begins with a dot (.). Such names are
considered hidden and are not normally of interest to users. (This mirrors the Unix
convention of not listing files whose names begin with dot.) You can force 1s to list
everything by setting the all.names argument to TRUE:

> .hidvar <- 10

> 1s()

[1] "™ "x" "y" "z"

> 1s(all.names=TRUE)

[1] ".hidvar" "f" "x" "y" "z"

See Also

See Recipe 2.4 for deleting variables and Recipe 12.15 for inspecting your variables.

2.4 Deleting Variables

Problem

You want to remove unneeded variables or functions from your workspace or to erase
its contents completely.

Solution

Use the rm function.
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Discussion

Your workspace can get cluttered quickly. The rm function removes, permanently, one
or more objects from the workspace:

> X <- 2%pi

> X

[1] 6.283185

> rm(x)

> X

Error: object "x" not found

There is no “undo”; once the variable is gone, it’s gone.
You can remove several variables at once:
> rm(x,Yy,z)

You can even erase your entire workspace at once. The rm function has a 1list argument
consisting of a vector of names of variables to remove. Recall that the 1s function returns
a vector of variables names; hence you can combine rm and 1s to erase everything:

> 1s()

[1] " "x" g

> rm(list=1s())

> 1s()

character(0)

Be Polite

Never put rm(1list=1s()) into code you share with others, such as a library function or
sample code sent to a mailing list. Deleting all the variables in someone else’s workspace
is worse than rude and will make you extremely unpopular.

See Also
See Recipe 2.3.

2.5 Creating a Vector

Problem

You want to create a vector.

Solution

Use the c(...) operator to construct a vector from given values.
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Discussion

Vectors are a central component of R, not just another data structure. A vector can
contain either numbers, strings, or logical values but not a mixture.

The c(...) operator can construct a vector from simple elements:

> c(1,1,2,3,5,8,13,21)

[1] 1 1 2 3 5 81321

> c(1*pi, 2%pi, 3*pi, 4%pi)

[1] 3.141593 6.283185 9.424778 12.566371
> c("Everyone", "loves", "stats.")

[1] "Everyone" "loves" "stats."

> ¢(TRUE, TRUE, FALSE, TRUE)

[1] TRUE TRUE FALSE TRUE

If the arguments to c(...) are themselves vectors, it flattens them and combines them
into one single vector:

> vl <- ¢(1,2,3)

> v2 <- c(4,5,6)

> c(vi,v2)

[1]123456

Vectors cannot contain a mix of data types, such as numbers and strings. If you create
a vector from mixed elements, R will try to accommodate you by converting one of
them:

> vl <- c(1,2,3)

> V3 <= C("A"."B","C")

> c(vi,v3)

[1] ™17 "2" 3" "A" mpn C”

Here, the user tried to create a vector from both numbers and strings. R converted all
the numbers to strings before creating the vector, thereby making the data elements
compatible.

Technically speaking, two data elements can coexist in a vector only if they have the
same mode. The modes of 3.1415 and "foo" are numeric and character, respectively:

> mode(3.1415)
[1] "numeric"

> mode("foo")
[1] "character"”

Those modes are incompatible. To make a vector from them, R converts 3.1415 to
character mode so it will be compatible with "foo":

> c(3.1415, "foo")

[1] ||3.1415II llfooll

> mode(c(3.1415, "foo"))
[1] "character"
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c is a generic operator, which means that it works with many datatypes
and not just vectors. However, it might not do exactly what you expect,
so check its behavior before applying it to other datatypes and objects.

&

See Also

See the “Introduction” to Chapter 5 for more about vectors and other data structures.

2.6 Computing Basic Statistics

Problem

You want to calculate basic statistics: mean, median, standard deviation, variance,
correlation, or covariance.

Solution
Use one of these functions as applies, assuming that x and y are vectors:
* mean(x)
e median(x)
* sd(x)
* var(x)
* cor(x, y)

* cov(x, y)

Discussion

When I first opened the documentation for R, I begin searching for material entitled
“Procedures for Calculating Standard Deviation.” I figured that such an important topic
would likely require a whole chapter.

It’s not that complicated.

Standard deviation and other basic statistics are calculated by simple functions. Ordi-
narily, the function argument is a vector of numbers and the function returns the cal-
culated statistic:

> x <- c¢(0,1,1,2,3,5,8,13,21,34)
> mean(x)

[1] 8.8

> median(x)

[1] 4

> sd(x)

[1] 11.03328

> var(x)

[1] 121.7333
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The sd function calculates the sample standard deviation, and var calculates the sample
variance.

The cor and cov functions can calculate the correlation and covariance, respectively,
between two vectors:

> x <- c(0,1,1,2,3,5,8,13,21,34)

>y <- log(x+1)

> cor(x,y)

[1] 0.9068053

> cov(x,y)

[1] 11.49988

All these functions are picky about values that are not available (NA). Even one NA
value in the vector argument causes any of these functions to return NA or even halt
altogether with a cryptic error:

> x <- ¢(0,1,1,2,3,NA)

> mean(x)

[1] NA

> sd(x)

[1] NA
It’s annoying when R is that cautious, but it is the right thing to do. You must think
carefully about your situation. Does an NA in your data invalidate the statistic? If yes,
then R is doing the right thing. If not, you can override this behavior by setting
na.rm=TRUE, which tells R to ignore the NA values:

> x <- ¢(0,1,1,2,3,NA)

> mean(x, na.rm=TRUE)

[1] 1.4

> sd(x, na.rm=TRUE)

[1] 1.1240175

A beautiful aspect of mean and sd is that they are smart about data frames. They un-
derstand that each column of the data frame is a different variable, so they calculate
their statistic for each column individually. This example calculates those basic statis-
tics for a data frame with three columns:

> print(dframe)
small medium big

1 0.6739635 10.526448 99.83624
2 1.5524619 9.205156 100.70852
3 0.3250562 11.427756 99.73202
4 1.2143595 8.533180 98.53608
5 1.3107692 9.763317 100.74444
6 2.1739663 9.806662 98.58961
7 1.6187899 9.150245 100.46707
8 0.8872657 10.058465 99.88068
9 1.9170283 9.182330 100.46724
10 0.7767406 7.949692 100.49814

> mean(dframe)
small medium big
1.245040 9.560325 99.946003
> sd(dframe)

2.6 Computing Basic Statistics | 31

www.it-ebooks.info


http://www.it-ebooks.info

small medium big
0.5844025 0.9920281 0.8135498

Notice that mean and sd both return three values, one for each column defined by the
data frame. (Technically, they return a three-element vector whose names attribute is
taken from the columns of the data frame.)

The var function understands data frames, too, but it behaves quite differently than do
mean and sd. It calculates the covariance between the columns of the data frame and
returns the covariance matrix:
> var(dframe)
small medium big
small  0.34152627 -0.21516416 -0.04005275

medium -0.21516416 0.98411974 -0.09253855
big -0.04005275 -0.09253855 0.66186326

Likewise, if x is either a data frame or a matrix, then cor(x) returns the correlation
matrix and cov(x) returns the covariance matrix:
> cor(dframe)
small medium big
small  1.00000000 -0.3711367 -0.08424345
medium -0.37113670 1.0000000 -0.11466070
big  -0.08424345 -0.1146607 1.00000000
> cov(dframe)
small medium big
small  0.34152627 -0.21516416 -0.04005275
medium -0.21516416 0.98411974 -0.09253855
big  -0.04005275 -0.09253855 0.66186326

The median function does not understand data frames, alas. To calculate the medians
of data frame columns, use Recipe 6.4 and apply the median function to each column
separately.

See Also
See Recipes 2.14, 6.4, and 9.17.

2.7 Creating Sequences

Problem

You want to create a sequence of numbers.

Solution

Use an n:m expression to create the simple sequence n, n+1, n+2, ..., m:
> 1:5
[1]12345
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Use the seq function for sequences with an increment other than 1:

> seq(from=1, to=5, by=2)
[11 135

Use the rep function to create a series of repeated values:

> rep(1, times=5)
[1]11111

Discussion

The colon operator (n:m) creates a vector containing the sequence n, n+1, n+2, ..., m:

> 0:9

[11] 01234567809

> 10:19

[1] 10 11 12 13 14 15 16 17 18 19
> 9:0

[1]9876543210

Observe that R was clever with the last expression (9:0). Because 9 is larger than 0, it
counts backward from the starting to ending value.

The colon operator works for sequences that grow by 1 only. The seq function also
builds sequences but supports an optional third argument, which is the increment:
> seq(from=0, to=20)
[1] o0 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20
> seq(from=0, to=20, by=2)
[1] o0 2 4 6 8 10 12 14 16 18 20
> seq(from=0, to=20, by=5)
[1] o 510 15 20

Alternatively, you can specify a length for the output sequence and then R will calculate
the necessary increment:

> seq(from=0, to=20, length.out=5)
[1] o 5101520

> seq(from=0, to=100, length.out=5)
[1] o 25 50 75 100

The increment need not be an integer. R can create sequences with fractional incre-
ments, too:

> seq(from=1.0, to=2.0, length.out=5)
[1] 1.00 1.25 1.50 1.75 2.00

For the special case of a “sequence” that is simply a repeated value you should use the
rep function, which repeats its first argument:

> rep(pi, times=5)
[1] 3.1241593 3.141593 3.141593 3.141593 3.141593

See Also

See Recipe 7.14 for creating a sequence of Date objects.
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2.8 Comparing Vectors

Problem

You want to compare two vectors or you want to compare an entire vector against a
scalar.

Solution

The comparison operators (==, !=, <, >, <=, >=) can perform an element-by-element
comparison of two vectors. They can also compare a vector’s element against a scalar.
The result is a vector of logical values in which each value is the result of one element-
wise comparison.

Discussion

R has two logical values, TRUE and FALSE. These are often called Boolean values in other
programming languages.

The comparison operators compare two values and return TRUE or FALSE, depending
upon the result of the comparison:

>a<-3

>a==pi # Test for equality
[1] FALSE

>al=pi # Test for inequality
[1] TRUE

>a<pi

[1] TRUE

>a»>pi

[1] FALSE

> a<=pi

[1] TRUE

>a>=pi

[1] FALSE

1

1

You can experience the power of R by comparing entire vectors at once. R will perform
an element-by-element comparison and return a vector of logical values, one for each
comparison:

>v<-c3,pi, 4)

> w <- c(pi, pi, pi)

>V == # Compare two 3-element vectors
[1] FALSE TRUE FALSE # Result is a 3-element vector
>vil=w

[1] TRUE FALSE TRUE

>V <w

[1] TRUE FALSE FALSE

>V <=wW

[1] TRUE TRUE FALSE

>Vviw

[1] FALSE FALSE TRUE
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>V =W
[1] FALSE TRUE TRUE

You can also compare a vector against a single scalar, in which case R will expand the
scalar to the vector’s length and then perform the element-wise comparison. The pre-
vious example can be simplified in this way:

> v <= c(3, pi, 4)

>v ==pi # Compare a 3-element vector against one number
[1] FALSE TRUE FALSE
>v I=pi

[1] TRUE FALSE TRUE
(This is an application of the Recycling Rule, Recipe 5.3.)

After comparing two vectors, you often want to know whether any of the comparisons
were true or whether all the comparisons were true. The any and all functions handle
those tests. They both test a logical vector. The any function returns TRUE if any element
of the vector is TRUE. The all function returns TRUE if all elements of the vector are TRUE:

> v <- (3, pi, 4)

> any(v == pi) # Return TRUE if any element of v equals pi
[1] TRUE
> all(v == 0) # Return TRUE if all elements of v are zero
[1] FALSE

See Also

See Recipe 2.9.

2.9 Selecting Vector Elements

Problem

You want to extract one or more elements from a vector.

Solution
Select the indexing technique appropriate for your problem:
* Use square brackets to select vector elements by their position, such as v[3] for the
third element of v.
* Use negative indexes to exclude elements.
* Use a vector of indexes to select multiple values.
* Use a logical vector to select elements based on a condition.

¢ Use names to access named elements.
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Discussion

Selecting elements from vectors is another powerful feature of R. Basic selection is
handled just as in many other programming languages—use square brackets and a
simple index:

> fib <- c(0,1,1,2,3,5,8,13,21,34)
> fib

[1] 0 1 1 2 3 5 8132134
> fib[1]

[1] o

> fib[2]

[1] 1

> fib[3]

[1] 1

> fib[4]

[1] 2

> fib[5]

(1] 3

Notice that the first element has an index of 1, not 0 as in some other programming

languages.

A cool feature of vector indexing is that you can select multiple elements at once. The
index itself can be a vector, and each element of that indexing vector selects an element
from the data vector:

> fib[1:3] # Select elements 1 through 3
[1]o011
> fib[4:9] # Select elements 4 through 9

[1] 2 3 5 813 21

An index of 1:3 means select elements 1, 2, and 3, as just shown. The indexing vector
needn’t be a simple sequence, however. You can select elements anywhere within the
data vector—as in this example, which selects elements 1, 2, 4, and 8:

> fib[c(1,2,4,8)]

[1] 0 1 213
R interprets negative indexes to mean exclude a value. An index of -1, for instance,
means exclude the first value and return all other values:

> fib[-1] # Ignore first element
[1] 1 1 2 3 5 8132134

This method can be extended to exclude whole slices by using an indexing vector of
negative indexes:

> fib[1:3] # As before
[1Jo11
> fib[-(1:3)] # Invert sign of index to exclude instead of select

[1] 2 3 5 8132134

Anotherindexing technique uses a logical vector to select elements from the data vector.
Everywhere that the logical vector is TRUE, an element is selected:
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> fib < 10 # This vector is TRUE wherever fib is less than 10
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE

> fib[fib < 10] # Use that vector to select elements less than 10
[tTo112358

> fib %% 2 == # This vector is TRUE wherever fib is even
[1] TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE

> fib[fib %% 2 == 0] # Use that vector to select the even elements
[1] o 2 8 34

Ordinarily, the logical vector should be the same length as the data vector so you are
clearly either including or excluding each element. (If the lengths differ then you need
to understand the Recycling Rule, Recipe 5.3.)

By combining vector comparisons, logical operators, and vector indexing, you can per-
form powerful selections with very little R code:

Select all elements greater than the median
v[ v > median(v) ]

Select all elements in the lower and upper 5%
v[ (v < quantile(v,0.05)) | (v > quantile(v,0.95)) ]

Select all elements that exceed £2 standard deviations from the mean
v[ abs(v-mean(v)) > 2*sd(v) ]

Select all elements that are neither NA nor NULL
v[ lis.na(v) & lis.null(v) ]

One final indexing feature lets you select elements by name. It assumes that the vector
has a names attribute, defining a name for each element. This can be done by assigning
a vector of character strings to the attribute:

> years <- c(1960, 1964, 1976, 1994)
> names(years) <- c("Kennedy", "Johnson", "Carter", "Clinton")
> years
Kennedy Johnson Carter Clinton
1960 1964 1976 1994

Once the names are defined, you can refer to individual elements by name:

> years["Carter"]
Carter

1976
> years["Clinton"]
Clinton

1994

This generalizes to allow indexing by vectors of names: R returns every element named
in the index:
> years[c("Carter","Clinton")]

Carter Clinton
1976 1994
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See Also

See Recipe 5.3 for more about the Recycling Rule.

2.10 Performing Vector Arithmetic

Problem

You want to operate on an entire vector at once.

Solution

The usual arithmetic operators can perform element-wise operations on entire vectors.
Many functions operate on entire vectors, too, and return a vector result.

Discussion

Vector operations are one of R’s great strengths. All the basic arithmetic operators can
be applied to pairs of vectors. They operate in an element-wise manner; that is, the
operator is applied to corresponding elements from both vectors:

> v <- c(11,12,13,14,15)

> w <= c(1,2,3,4,5)

>V + W

[1] 12 14 16 18 20

>V - W

[1] 10 10 10 10 10

>v ¥

[1] 12 24 39 56 75

>v/w

[1] 11.000000 6.000000 4.333333 3.500000 3.000000
>whtv

[1] 1 4096 1594323 268435456 30517578125

Observe that the length of the result here is equal to the length of the original vectors.
The reason is that each element comes from a pair of corresponding values in the input
vectors.

If one operand is a vector and the other is a scalar, then the operation is performed
between every vector element and the scalar:

> W

[1]12345

>W+ 2

[1]134567

>W -2

[1] -1 0 1 2 3
>w ¥ 2

[1] 2 4 6 810
>w/2

[1] 0.5 1.0 1.5 2.0 2.5
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>w 2
[1] 1 4 91625

>2 M w

(1]

For example, you can recenter an entire vector in one expression simply by subtracting

the mean of its contents:

> W
[1]12345

> mean(w)

[1] 3

> W - mean(w)

[1] -2 -1 0 1 2

Likewise, you can calculate the z-score of a vector in one expression: subtract the mean
and divide by the standard deviation:

> W

[1]12345

> sd(w)

[1] 1.581139

> (w - mean(w)) / sd(w)

[1] -1.2649111 -0.6324555 0.0000000 0.6324555 1.2649111
Yet the implementation of vector-level operations goes far beyond elementary arith-
metic. It pervades the language, and many functions operate on entire vectors. The
functions sqrt and log, for example, apply themselves to every element of a vector and
return a vector of results:

>w

[1]12345

> sqrt(w)

[1] 1.000000 1.414214 1.732051 2.000000 2.236068

> log(w)

[1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379

> sin(w)

[1] 0.8414710 0.9092974 0.1411200 -0.7568025 -0.9589243

There are two great advantages to vector operations. The first and most obvious is
convenience. Operations that require looping in other languages are one-liners in R.
The second is speed. Most vectorized operations are implemented directly in C code,
so they are substantially faster than the equivalent R code you could write.

See Also

Performing an operation between a vector and a scalar is actually a special case of the
Recycling Rule; see Recipe 5.3.
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2.11 Getting Operator Precedence Right

Problem

Your R expression is producing a curious result, and you wonder if operator precedence
is causing problems.

Solution

The full list of operators is shown in Table 2-1, listed in order of precedence from highest
to lowest. Operators of equal precedence are evaluated from left to right except where
indicated.

Table 2-1. Operator precedence

Operator Meaning See also

[ [ Indexing Recipe 2.9

R Access variables in a name space

$e Component extraction, slot extraction

A Exponentiation (right to left)

-+ Unary minus and plus

Sequence creation Recipe 2.7, Recipe 7.14

%any’ Special operators Discussion

* / Multiplication, division Discussion

+ - Addition, subtraction

== I= < > <= >=  (omparison Recipe 2.8

! Logical negation

& 8& Logical “and”, short-circuit “and”

| 1] Logical “or”, short-circuit “or”

~ Formula Recipe 11.1

-> > Rightward assignment Recipe 2.2

= Assignment (right to left) Recipe 2.2

<- <<= Assignment (right to left) Recipe 2.2

? Help Recipe 1.7
Discussion

Getting your operator precedence wrong in R is a common problem. It certainly hap-
pens to me a lot. I unthinkingly expect that the expression 0:n-1 will create a sequence
of integers from 0 to n - 1 but it does not:
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> n <- 10
> 0:n-1
[1]-1 01 2 3 45 6 7 89

It creates the sequence from -1 to n - 1 because R interprets it as (0:n)-1.

You might not recognize the notation %any% in the table. R interprets any text between
percent signs (%...%) as a binary operator. Several such operators have predefined
meanings:
%%
Modulo operator
%1%
Integer division
%*%
Matrix multiplication
%in%
Returns TRUE if the left operand occurs in its right operand; FALSE otherwise

You can also define new binary operators using the %...% notation; see Recipe 12.19.
The point here is that all such operators have the same precedence.

See Also

See Recipe 2.10 for more about vector operations, Recipe 5.15 for more about matrix
operations, and Recipe 12.19 to define your own operators. See the Arithmetic and
Syntax topics in the R help pages as well as Chapters 5 and 6 of R in a Nutshell (O’Reilly).

2.12 Defining a Function

Problem

You want to define an R function.

Solution

Create a function by using the function keyword followed by a list of parameters and
the function body. A one-liner looks like this:
function(param,, ...., paramy) expr

The function body can be a series of expressions, in which case curly braces should be
used around the function body:
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function(param,, ..., paramy) {
expr,

expry

Discussion

Function definitions are how you tell R, “Here’s how to calculate this.” For example,
R does not have a built-in function for calculating the coefficient of variation. You can
define the calculation in this way:

> cv <- function(x) sd(x)/mean(x)

> cv(1:10)

[1] 0.5504819
The first line creates a function and assigns it to cv. The second line invokes the function,
using 1:10 for the value of parameter x. The function returns the value of its single-
expression body, sd(x)/mean(x).

After defining a function we can use it anywhere a function is expected, such as the
second argument of lapply (Recipe 6.2):

> cv <- function(x) sd(x)/mean(x)
> lapply(1st, cv)

A multiline function uses curly braces to delimit the start and end of the function body.
Here is a function that implements Euclid’s algorithm for computing the greatest com-
mon divisor of two integers:

> ged <- function(a,b) {

+ if (b == 0) return(a)

+ else return(gcd(b, a %% b))

+}
R also allows anonymous functions; these are functions with no name that are useful
for one-liners. The preceding example using cv and lapply can be shrunk to one line
by using an anonymous function that is passed directly into lapply:

> lapply(1st, function(x) sd(x)/mean(x))

This is not a book about programming R, so I cannot fully cover the subtleties of coding
an R function. But here are a few useful points:

Return value
All functions return a value. Normally, a function returns the value of the last
expression in its body. You can also use return(expr).

Call by value
Function parameters are “call by value”—in other words, if you change a parameter
then the change is local and does not affect the caller’s value.
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Local variables
You create a local variable simply by assigning a value to it. When the function
exits, local variables are lost.

Conditional execution
The R syntax includes an if statement. See help(Control) for details.

Loops
The R syntax also includes for loops, while loops, and repeat loops. For details,
see help(Control).

Global variables
Within a function you can change a global variable by using the <<- assignment
operator, but this is not encouraged.

See Also

For more about defining functions, see An Introduction to R and R in a Nutshell.

2.13 Typing Less and Accomplishing More

Problem

You are getting tired of typing long sequences of commands and especially tired of
typing the same ones over and over.

Solution

Open an editor window and accumulate your reusable blocks of R commands there.
Then, execute those blocks directly from that window. Reserve the command line for
typing brief or one-off commands.

When you are done, you can save the accumulated code blocks in a script file for later
use.

Discussion

The typical beginner to R types an expression and sees what happens. As he gets more
comfortable, he types increasingly complicated expressions. Then he begins typing
multiline expressions. Soon, he is typing the same multiline expressions over and over,
perhaps with small variations, in order to perform his increasingly complicated
calculations.
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The experienced user does not often retype a complex expression. She may type the
same expression once or twice, but when she realizes it is useful and reusable she will
cut-and-paste it into an editor window of the GUI. To execute the snippet thereafter,
she selects the snippetin the editor window and tells R to execute it, rather than retyping
it. This technique is especially powerful as her snippets evolve into long blocks of code.

On Windows and OS X, a few features of the GUI facilitate this workstyle:

To open an editor window
From the main menu, select File - New script.

To execute one line of the editor window
Position the cursor on the line and then press Ctrl-R to execute it.

To execute several lines of the editor window
Highlight the lines using your mouse; then press Ctrl-R to execute them.

To execute the entire contents of the editor window
Press Ctrl-A to select the entire window contents and then Ctrl-R to execute them;
or, from the main menu, select Edit - Run all.

Copying lines from the console window to the editor window is simply a matter of copy
and paste. When you exit R, it will ask if you want to save the new script. You can
either save it for future reuse or discard it.

I recently used this technique to create a small illustration of the Central Limit Theorem
for some students. I wanted a probability density of the population overlaid with the
density of the sample mean.

[ opened R and then began defining variables and executing functions to create the plot
of the population density. It dawned on me that I would likely reexecute those few
commands, so I opened a script editor window in R and pasted the commands into it
as shown in Figure 2-1.

I resumed typing commands in the console window, thinking I would overlay the ex-
isting graph with the density for the sample mean. However, the second density plot
did not fit inside the graph. I needed to fix my function calls and reexecute everything.

Here came the big pay-off: I retyped little or nothing. Rather, I pasted a little more code
into the editor window, tweaked the call to the plot function, and then reexecuted the
whole window contents.

Voila! The scaling problem was fixed. I tweaked the code again (to add titles and labels)
and once again reexecuted the whole window contents; this yielded the final result
shown in Figure 2-2. I saved the editor contents in a script file when I was done, enabling
me to re-create this graph at will.
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Fie Edit Packages Windows Help

i R Graphics: Device 2 (ACTIVE)

MU <- 10

SD <- 1

N <- 10000

n <- 30

pop <- rnorm(N, mean=NU, sd=SD
plot (density (pop)
MU <- 10
SD «- 1
N <- 10000 g
n <- 30 sUntitled R Editor
pop <- rnorflmy «- 10
ploc (densitfen o 1
N <- 10000

no<- 30

pop <- rnorm(N, mean=HU, sd=3D
plot (density(pop))

density.default(x = pop)

R R A

T
10

T
14

Bandwidth = 0.1417

Figure 2-1. Capturing the commands in a new edit window

iR Console

oy

N Population vs Sample Mean, n = 30

> pop <- rnorm(N, mean=NU, sd=SD)
>

» samp.means <- rnorm(N, mean=MU, sd=SD/sqrt (n)
> WaxX.Samp.means <- max (densicy(sanp.means) §y)

Figure 2-2. Evolved state of the code
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2.14 Avoiding Some Common Mistakes

Problem

You want to avoid some of the common mistakes made by beginning users—and also
by experienced users, for that matter.

Discussion
Here are some easy ways to make trouble for yourself:

Forgetting the parentheses after a function invocation
You call an R function by putting parentheses after the name. For instance, this
line invokes the 1s function:
> 1s()
[1] " "y" "2
However, if you omit the parentheses then R does not execute the function. Instead,
it shows the function definition, which is almost never what you want:
> 1s

function (name, pos = -1, envir = as.environment(pos), all.names = FALSE,
pattern)

if (!missing(name)) {
nameValue <- try(name)
if (identical(class(nameValue), "try-error")) {
name <- substitute(name)

: (etc.)

Forgetting to double up backslashes in Windows file paths
This function call appears to read a Windows file called F:\research\bio\assay.csv,
but it does not:

> tbl <- read.csv("F:\research\bio\assay.csv")

Backslashes (\) inside character strings have a special meaning and therefore need
to be doubled up. R will interpret this file name as F:researchbioassay.csv, for ex-
ample, which is not what the user wanted. See Recipe 4.5 for possible solutions.

Mistyping “<-” as “< (blank) -”
The assignment operator is <-, with no space between the < and the -:

> x <- pi # Set x to 3.1415926...
If you accidentally insert a space between < and -, the meaning changes completely:

>x < - pi # Oops! We are comparing x instead of setting it!
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This is now a comparison (<) between x and negative 7 (- pi). It does not change
x. If you are lucky, x is undefined and R will complain, alerting you that something
is fishy:

>x < - pi

Error: object "x" not found
If x is defined, R will perform the comparison and print a logical value, TRUE or
FALSE. That should alert you that something is wrong: an assignment does not
normally print anything;:

>X <=0 # Initialize x to zero
>x < - pi # Oops!
[1] FALSE

Incorrectly continuing an expression across lines

R reads your typing until you finish a complete expression, no matter how many
lines of input that requires. It prompts you for additional input using the + prompt
until it is satisfied. This example splits an expression across two lines:

> total <- 1 +2 + 3 + # Continued on the next line

+ 44+5

> print(total)

[1] 15
Problems begin when you accidentally finish the expression prematurely, which
can easily happen:

> total <- 1+ 2 + 3 # Oops! R sees a complete expression

> +4+5 # This is a new expression; R prints its value
[1] 9

> print(total)

[1] 6

There are two clues that something is amiss: R prompted you with a normal prompt
(»), not the continuation prompt (+); and it printed the value of 4 + 5.

This common mistake is a headache for the casual user. It is a nightmare for pro-

grammers, however, because it can introduce hard-to-find bugs into R scripts.
Using = instead of ==

Use the double-equal operator (==) for comparisons. If you accidentally use the

single-equal operator (=), you will irreversibly overwrite your variable:

=0 # Compare v against zero

>
>v=0 # Assign 0 to v, overwriting previous contents

v
\")
Writing 1:n+1 when you mean 1: (n+1)
You might think that 1:n+1 is the sequence of numbers 1, 2, ..., n, n + 1. It’s not.
It is the sequence 1, 2, ..., n with 1 added to every element, giving 2, 3, ..., n, n +
1. This happens because R interprets 1:n+1 as (1:n)+1. Use parentheses to get ex-
actly what you want:
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>n<-5
> 1:n+1
[1]23456
> 1:(n+1)
[1]123456

Getting bitten by the Recycling Rule
Vector arithmetic and vector comparisons work well when both vectors have the
same length. However, the results can be baffling when the operands are vectors
of differing lengths. Guard against this possibility by understanding and remem-
bering the Recycling Rule, Recipe 5.3.

Installing a package but not loading it with library() or require()
Installing a package is the first step toward using it, but one more step is required.
Use library or require to load the package into your search path. Until you do so,
R will not recognize the functions or datasets in the package. See Recipe 3.6:
> truehist(x,n)
Error: could not find function "truehist"
> library(MASS) # Load the MASS package into R

> truehist(x,n)
>

Writing aList[1] when you mean aList[[i]], or vice versa
If the variable 1st contains a list, it can be indexed in two ways: 1st[[n]] is the
nth element of the list; whereas 1st[n] is a list whose only element is the nth element
of 1st. That’s a big difference. See Recipe 5.7.

Using & instead of 88, or vice versa; same for | and ||
Use & and | in logical expressions involving the logical values TRUE and FALSE. See
Recipe 2.9.

Use 8& and || for the flow-of-control expressions inside if and while statements.

Programmers accustomed to other programming languages may reflexively use
8& and || everywhere because “they are faster.” But those operators give peculiar
results when applied to vectors of logical values, so avoid them unless that’s really
what you want.

Passing multiple arguments to a single-argument function
What do you think is the value of mean(9,10,11)? No, it’s not 10. It’s 9. The mean
function computes the mean of the firstargument. The second and third arguments
are being interpreted as other, positional arguments.

Some functions, such as mean, take one argument. Other arguments, such as max
and min, take multiple arguments and apply themselves across all arguments. Be
sure you know which is which.

Thinking that max behaves like pmax, or that min behaves like pmin
The max and min functions have multiple arguments and return one value: the
maximum or minimum of all their arguments.
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The pmax and pmin functions have multiple arguments but return a vector with
values taken element-wise from the arguments. See Recipe 12.9.

Misusing a function that does not understand data frames
Some functions are quite clever regarding data frames. They apply themselves to
the individual columns of the data frame, computing their result for each individual
column. The mean and sd functions are good examples. These functions can com-
pute the mean or standard deviation of each column because they understand that
each column is a separate variable and that mixing their data is not sensible.

Sadly, not all functions are that clever. This includes the median, max, and min func-
tions. They will lump together every value from every column and compute their
result from the lump, which might not be what you want. Be aware of which func-
tions are savvy to data frames and which are not.

Posting a question to the mailing list before searching for the answer
Don’t waste your time. Don’t waste other people’s time. Before you post a question
to a mailing list or to Stack Overflow, do your homework and search the archives.
Odds are, someone has already answered your question. If so, you’ll see the answer
in the discussion thread for the question. See Recipe 1.12.

See Also
See Recipes 1.12,2.9,5.3,and 5.7.

2.14 Avoiding Some Common Mistakes | 49

www.it-ebooks.info


http://www.it-ebooks.info

CHAPTER 3
Navigating the Software

Introduction

R is a big chunk of software, first and foremost. You will inevitably spend time doing
what one does with any big piece of software: configuring it, customizing it, updating
it, and fitting it into your computing environment. This chapter will help you perform
those tasks. There is nothing here about numerics, statistics, or graphics. This is all
about dealing with R as software.

3.1 Getting and Setting the Working Directory

Problem

You want to change your working directory. Or you just want to know what it is.

Solution

Command line
Use getwd to report the working directory, and use setwd to change it:
> getwd()
[1] "/home/paul/research"
> setwd("Bayes")

> getwd()
[1] "/home/paul/research/Bayes"

Windows
From the main menu, select File - Change dir... .
0S X

From the main menu, select Misc — Change Working Directory.

For both Windows and OS X, the menu selection opens the current working directory
in a file browser. From there, you can navigate to a new working directory if desired.
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Discussion

Your working directory is important because it is the default location for all file input
and output—including reading and writing data files, opening and saving script files,
and saving your workspace image. When you open a file and do not specify an absolute
path, R will assume that the file is in your working directory.

The initial working directory depends upon how you started R. See Recipe 1.2.

See Also

See Recipe 4.5 for dealing with filenames in Windows.

3.2 Saving Your Workspace

Problem

You want to save your workspace without exiting from R.

Solution

Call the save. image function:

> save.image()

Discussion

Your workspace holds your R variables and functions, and it is created when R starts.
The workspace is held in your computer’s main memory and lasts until you exit from
R, at which time you can save it.

However, you may want to save your workspace without exiting R. You might go to
lunch, for example, and want to protect your work against an unexpected power outage
or machine crash. Use the save.image function.

The workspace is written to a file called . RData in the working directory. When R starts,
it looks for that file and, if found, initializes the workspace from it.

A sad fact is that the workspace does not include your open graphs: that cool graph on
your screen disappears when you exit R, and there is no simple way to save and restore
it. So before you exit, save the data and the R code that will re-create your graphs.

See Also

See Recipe 1.2 for how to save your workspace when exiting R and Recipe 3.1 for setting
the working directory.
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3.3 Viewing Your Command History

Problem

You want to see your recent sequence Of commands.

Solution

Scroll backward by pressing the up arrow or Ctrl-P. Or use the history function to view
your most recent input:

> history()

Discussion

The history function will display your most recent commands. By default it shows the
most recent 25 lines, but you can request more:

> history(100) # Show 100 most recent lines of history
> history(Inf) # Show entire saved history

For very recent commands, simply scroll backward through your input using the
command-line editing feature: pressing either the up arrow or Ctrl-P will cause your
previous typing to reappear, one line at a time.

If you’ve exited from R then you can still see your command history. It saves the history
in a file called .Rhistory in the working directory, if requested. Open the file with a text
editor and then scroll to the bottom; you will see your most recent typing.

3.4 Saving the Result of the Previous Command

Problem

You typed an expression into R that calculated the value, but you forgot to save the
result in a variable.

Solution

A special variable called .Last.value saves the value of the most recently evaluated
expression. Save it to a variable before you type anything else.

Discussion

It is frustrating to type a long expression or call a long-running function but then forget
to save the result. Fortunately, you needn’t retype the expression nor invoke the func-
tion again—the result was saved in the .Last.value variable:
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> aVeryLongRunningFunction() # Oops! Forgot to save the result!
[1] 147.6549

> x <- .Last.value # Capture the result now

> X

[1] 147.6549

A word of caution: the contents of .Last.value are overwritten every time you type
another expression, so capture the value immediately. If you don’t remember until
another expression has been evaluated, it’s too late.

See Also

See Recipe 3.3 to recall your command history.

3.5 Displaying the Search Path

Problem

You want to see the list of packages currently loaded into R.

Solution

Use the search function with no arguments:

> search()

Discussion

The search path is a list of packages that are currently loaded into memory and available
for use. Although many packages may be installed on your computer, only a few of
them are actually loaded into the R interpreter at any given moment. You might be
wondering which packages are loaded right now.

With no arguments, the search function returns the list of loaded packages. It produces
an output like this:

> search()

[1] ".GlobalEnv" "package:stats" "package:graphics"
[4] "package:grDevices" "package:utils" "package:datasets”
[7] "package:methods"  "Autoloads" "package:base"

Your machine may return a different result, depending on what’s installed there. The
return value of search is a vector of strings. The first string is ".GlobalEnv", which refers
to your workspace. Most strings have the form "package:packagename”, which indicates
that the package called packagename is currently loaded into R. In this example, the
loaded packages include stats, graphics, grDevices, utils, and so forth.

R uses the search path to find functions. When you type a function name, R searches
the path—in the order shown—until it finds the function in a loaded package. If the
function is found, R executes it. Otherwise, it prints an error message and stops. (There
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is actually a bit more to it: the search path can contain environments, not just packages,
and the search algorithm is different when initiated by an object within a package; see
the R Language Definition for details.)

Since your workspace (.GlobalEnv) is first in the list, R looks for functions in your
workspace before searching any packages. If your workspace and a package both con-
tain a function with the same name, your workspace will “mask” the function; this
means that R stops searching after it finds your function and so never sees the package
function. This is a blessing if you want to override the package function...and a curse
if you still want access to the package function.

R also uses the search path to find R datasets (not files) via a similar procedure.

Unix users: don’t confuse the R search path with the Unix search path (the PATH envi-
ronment variable). They are conceptually similar but two distinct things. The R search
path isinternal to R and is used by R only to locate functions and datasets, whereas the
Unix search path is used by Unix to locate executable programs.

See Also

See Recipe 3.6 for loading packages into R, Recipe 3.8 for the list of installed packages
(not just loaded packages), and Recipe 5.31 for inserting data frames into the search
path.

3.6 Accessing the Functions in a Package

Problem

A package installed on your computer is either a standard package or a package down-
loaded by you. When you try using functions in the package, however, R cannot find
them.

Solution

Use either the library function or the require function to load the package into R:

> library(packagename)

Discussion

R comes with several standard packages, but not all of them are automatically loaded
when you start R. Likewise, you can download and install many useful packages from
CRAN, but they are not automatically loaded when you run R. The MASS package comes
standard with R, for example, but you could get this message when using the 1da func-
tion in that package:

> 1da(x)
Error: could not find function "lda"
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R is complaining that it cannot find the 1da function among the packages currently
loaded into memory.

When you use the library function or the require function, R loads the package into
memory and its contents become immediately available to you:

> lda(f ~ x +y)
Error: could not find function "lda"

> library(MASS) # Load the MASS library into memory
> lda(f ~ x +y) # Now R can find the function

Call:

lda(f ~ x +y)

Prior probabilities of groups:

: (etc.)

Before calling library, R does not recognize the function name. Afterward, the package
contents are available and calling the 1da function works.

Notice that you needn’t enclose the package name in quotes.

The require function is nearly identical to library. It has two features that are useful
for writing scripts. It returns TRUE if the package was successfully loaded and FALSE
otherwise. It also generates a mere warning if the load fails—unlike library, which
generates an error.

Both functions have a key feature: they do not reload packages that are already loaded,
so calling twice for the same package is harmless. This is especially nice for writing
scripts. The script can load needed packages while knowing that loaded packages will
not be reloaded.

The detach function will unload a package that is currently loaded:
> detach(package:MASS)
Observe that the package name must be qualified, as in package :MASS.

One reason to unload a package is that it contains a function whose name conflicts
with a same-named function lower on the search list. When such a conflict occurs, we
say the higher function masks the lower function. You no longer “see” the lower func-
tion because R stops searching when it finds the higher function. Hence unloading the
higher package unmasks the lower name.

See Also
See Recipe 3.5.
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3.7 Accessing Built-in Datasets

Problem

You want to use one of R’s built-in datasets.

Solution

The standard datasets distributed with R are already available to you, since the
datasets package is in your search path.

To access datasets in other packages, use the data function while giving the dataset
name and package name:

> data(dsname, package="pkgname")

Discussion

R comes with many built-in datasets. These datasets are useful when you are learning
about R, since they provide data with which to experiment.

Many datasets are kept in a package called (naturally enough) datasets, which is dis-
tributed with R. That package is in your search path, so you have instant access to its
contents. For example, you can use the built-in dataset called pressure:

> head(pressure)
temperature pressure

1 0 0.0002
2 20 0.0012
3 40 0.0060
4 60 0.0300
5 80  0.0900
6 100  0.2700

If you want to know more about pressure, use the help function to learn about it and
other datasets:

> help(pressure) # Bring up help page for pressure dataset
You can see a table of contents for datasets by calling the data function with no
arguments:

> data() # Bring up a list of datasets
Any R package can elect to include datasets that supplement those supplied in
datasets. The MASS package, for example, includes many interesting datasets. Use the

data function to access a dataset in a specific package by using the package argument.
MASS includes a dataset called Cars93, which you can access in this way:

> data(Cars93, package="MASS")

After this call to data, the Cars93 dataset is available to you; then you can execute
summary (Cars93), head(Cars93), and so forth.
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When attaching a package to your search list (e.g., via library(MASS)), you don’t need
to call data. Its datasets become available automatically when you attach it.

You can see a list of available datasets in MASS, or any other package, by using the data
function with a package argument and no dataset name:

> data(package="pkgname")

See Also

See Recipe 3.5 for more about the search path and Recipe 3.6 for more about packages
and the library function.

3.8 Viewing the List of Installed Packages

Problem

You want to know what packages are installed on your machine.

Solution

Use the library function with no arguments for a basic list. Use installed.packages to
see more detailed information about the packages.

Discussion
The library function with no arguments prints a list of installed packages. The list can
be quite long. On a Linux computer, these might be the first few lines of output:

> library()
Packages in library '/usr/local/lib/R/site-library":

boot Bootstrap R (S-Plus) Functions (Canty)

CGIwithR CGI Programming in R

class Functions for Classification

cluster Cluster Analysis Extended Rousseeuw et al.

DBI R Database Interface

expsmooth Data sets for "Forecasting with exponential
smoothing"

. (etc.)

On Windows and OS X, the list is displayed in a pop-up window.

You can get more details via the installed.packages function, which returns a matrix
of information regarding the packages on your machine. Each matrix row corresponds
to one installed package. The columns contain the information such as package name,
library path, and version. The information is taken from R’s internal database of in-
stalled packages.
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To extract useful information from this matrix, use normal indexing methods. This
Windows snippet calls installed.packages and extracts both the Package and
Version columns, letting you see what version of each package is installed:

> installed.packages()[,c("Package","Version")]

Package Version
acepack "acepack” "1.3-2.2"
alr3 "alr3" "1.0.9"
base "base" "2.4.1"
boot "boot" "1.2-27"
bootstrap "bootstrap” "1.0-20"
calibrate "calibrate" "0.0"
car "car" "1.2-1"
chron "chron" "2.3-12"
class "class" "7.2-30"
cluster "cluster" "1.11.4"
. (etc.)

See Also

See Recipe 3.6 for loading a package into memory.

3.9 Installing Packages from CRAN

Problem

You found a package on CRAN, and now you want to install it on your computer.

Solution
Command line
Use the install.packages function, putting the name of the package in quotes:
> install.packages("packagename™)
Windows

You can also download and install via Packages — Install package(s)... from the
main menu.

OS X
You can also download and install via Packages & Data — Package Installer from
the main menu.

On all platforms, you will be asked to select a CRAN mirror.

On Windows and OS X, you will also be asked to select the packages for download.
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System-wide Installation on Linux or Unix

On Linux or Unix systems, root privileges are required to install packages into the
system-wide libraries because those directories are not usually writable by mere mor-
tals. For that reason, installations are usually performed by a system administrator. If
the administrator is unwilling or unable to do a system-wide installation, you can still
install packages in your personal library.

If you have root privileges:

1. Run su or sudo to start a root shell.

2. Start an R session in the root shell.

3. From there, execute the install.packages function.
If you don’t have root privileges, you’ll know very quickly. The install.packages func-
tion will stop, warning you that it cannot write into the necessary directories. Then it

will ask if you want to create a personal library instead. If you do, it will create the
necessary directories in your home directory and install the package there.

Discussion

Installing a package locally is the first step toward using it. The installer will prompt
you for a mirror site from which it can download the package files:

--- Please select a CRAN mirror for use in this session ---
It will then display a list of CRAN mirror sites. Select one close to you.

The official CRAN server is a relatively modest machine generously hosted by the
Department of Statistics and Mathematics at WU Wien, Vienna, Austria. If every R
user downloaded from the official server, it would buckle under the load, so there are
numerous mirror sites around the globe. You are strongly encouraged to find and use
a nearby mirror.

If the new package depends upon other packages that are not already installed locally,
then the R installer will automatically download and install those required packages.
This is a huge benefit that frees you from the tedious task of identifying and resolving
those dependencies.

There is a special consideration when installing on Linux or Unix. You can install the
package either in the system-wide library or in your personal library. Packages in the
system-wide library are available to everyone; packages in your personal library are
(normally) used only by you. So a popular, well-tested package would likely go in the
system-wide library whereas an obscure or untested package would go into your per-
sonal library.

By default, install.packages assumes you are performing a system-wide install. To
install into your personal library, first create a directory for the library—for example,
~/lib/R:
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$ mkdir ~/1ib
$ mkdir ~/1ib/R

Set the R_LIBS environment variable before starting R. Otherwise, it will not know your
library’s location:

$ export R_LIBS=~/1ib/R # bash syntax
$ setenv R_LIBS ~/lib/R # csh syntax

Then, call install.packages with the 1ib argument set to that directory:
> install.packages("packagename", 1ib="~/1ib/R")

See Also

See Recipe 1.11 for ways to find relevant packages and Recipe 3.6 for using a package
after installing it.

3.10 Setting a Default CRAN Mirror

Problem

You are downloading packages. You want to set a default CRAN mirror so R does not
prompt for one each time.

Solution
This solution assumes you have an .Rprofile, as described in Recipe 3.16:

1. Call the chooseCRANmirror function:
> chooseCRANmirror ()
R will present a list of CRAN mirrors.
2. Select a CRAN mirror from the list and press OK.
3. To get the URL of the mirror, look at the first element of the repos option:
> options("repos”)[[1]][1]
4. Add this line to your .Rprofile file:
options(repos="URL")
where URL is the URL of the mirror.

Discussion

When you install packages, you probably use the same CRAN mirror each time
(namely, the mirror closest to you). You probably get tired of R repeatedly asking you
to select a mirror. If you follow the Solution, R will stop prompting for a mirror because
it will have a default mirror.
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The repos option is the name of your default mirror. The chooseCRANmirror function
has the important side effect of setting the repos option according to your selection.
The problem is that R forgets the setting when it exits, leaving no permanent default.
By setting repos in your .Rprofile, you restore the setting every time R starts.

See Also

See Recipe 3.16 for more about the .Rprofile file and the options function.

3.11 Suppressing the Startup Message

Problem

You are tired of seeing R’s verbose startup message.

Solution

Use the --quiet command-line option when you start R.

Discussion

The startup message from R is handy for beginners because it contains useful infor-
mation about the R project and getting help. But the novelty wears off pretty quickly.

If you start R from the shell prompt, use the --quiet option to hide the startup message:

$ R --quiet
>

On my Linux box, I aliased R like this so I never see the startup message:
$ alias R="/usr/bin/R --quiet"

If you are starting R in Windows using a shortcut, you can embed the --quiet option
inside the shortcut. Right-click on the shortcut icon; select Properties; select the Short-
cut tab; and, at the end of the Target string, add the --quiet option. Be careful to leave
a space between the end of the program path and --quiet.

See Also
See Recipe 1.2.
3.12 Running a Script

Problem

You captured a series of R commands in a text file. Now you want to execute them.
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Solution

The source function instructs R to read the text file and execute its contents:

> source("myScript.R")

Discussion

When you have a long or frequently used piece of R code, capture it inside a text file.
That lets you easily rerun the code without having to retype it. Use the source function
to read and execute the code, just as if you had typed it into the R console.

Suppose the file hello.R contains this one, familiar greeting:
print("Hello, World!")

Then sourcing the file will execute the file contents:

> source("hello.R")
[1] "Hello, World!"

Setting echo=TRUE will echo the script lines before they are executed, with the R prompt
shown before each line:

> source("hello.R", echo=TRUE)

> print("Hello, World!")
[1] "Hello, World!"

See Also
See Recipe 2.13 for running blocks of R code inside the GUL

3.13 Running a Batch Script

Problem

You are writing a command script, such as a shell script in Unix or OS X or a BAT script
in Windows. Inside your script, you want to execute an R script.

Solution
Run the R program with the CMD BATCH subcommand, giving the script name and the
output file name:

$ R CMD BATCH scriptfile outputfile
If you want the output sent to stdout or if you need to pass command-line arguments
to the script, consider the Rscript command instead:

$ Rscript scriptfile argl arg2 arg3
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Discussion

R is normally an interactive program, one that prompts the user for input and then
displays the results. Sometimes you want to run R in batch mode, reading commands
from a script. This is especially useful inside shell scripts, such as scripts that include
a statistical analysis.

The CMD BATCH subcommand puts R into batch mode, reading from scriptfile and
writing to outputfile. It does not interact with a user.

You will likely use command-line options to adjust R’s batch behavior to your circum-
stances. For example, using --quiet silences the startup messages that would otherwise
clutter the output:

$ R CMD BATCH --quiet myScript.R results.out
Other useful options in batch mode include the following:

--slave
Like --quiet, but it makes R even more silent by inhibiting echo of the input.

--no-restore
At startup, do not restore the R workspace. This is important if your script expects
R to begin with an empty workspace.

--no-save
At exit, do not save the R workspace. Otherwise, R will save its workspace and
overwrite the .RData file in the working directory.

--no-init-file
Do not read either the .Rprofile or ~/.Rprofile files.

The CMD BATCH subcommand normally calls proc.time when your script completes,
showing the execution time. If this annoys you then end your script by calling
the g function with runLast=FALSE, which will prevent the call to proc.time.

The CMD BATCH subcommand has two limitations: the output always goes to a file, and
you cannot easily pass command-line arguments to your script. If either limitation is a
problem, consider using the Rscript program that comes with R. The first command-
line argument is the script name, and the remaining arguments are given to the script:

$ Rscript myScript.R argl arg2 arg3
Inside the script, the command-line arguments can be accessed by calling
commandArgs, which returns the arguments as a vector of strings:

argv <- commandArgs(TRUE)

The Rscript program takes the same command-line options as CMD BATCH, which were
just described.
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Output is written to stdout, which R inherits from the calling shell script, of course.
You can redirect the output to a file by using the normal redirection:

$ Rscript --slave myScript.R argl arg2 arg3 >results.out
Here is a small R script, arith.R, that takes two command-line arguments and performs
four arithmetic operations on them:

argv <- commandArgs(TRUE)
X <- as.numeric(argv[1])
y <- as.numeric(argv[2])

cat("x =", x, "\n")

)
cat("y =", y, "\n")
Gat("x +y = ", X +y, "\n")
cat("x -y = ", x -y, "\n')
Gat("’x *y = ", x *y, "\n')

cat("x /y =", x/y, "\n")
The script is invoked like this:
$ Rscript arith.R 2 3.1415

which produces the following output:

2

3.1415

y = 5.1415

y = -1.1415
y = 6.283

y = 0.6366385

X X X X< X

S~ ¥ v+

On Linux or Unix, you can make the script fully self-contained by placing a #! line at
the head with the path to the Rscript program. Suppose that Rscript is installed
in /usr/bin/Rscript on your system. Then adding this line to arith.R makes it a self-
contained script:

#!/usr/bin/Rscript --slave

argv <- commandArgs(TRUE)
X <- as.numeric(argv[1])

: (etc.)

At the shell prompt, we mark the script as executable:

$ chmod +x arith.R
Now we can invoke the script directly without the Rscript prefix:

$ arith.R 2 3.1415

See Also

See Recipe 3.12 for running a script from within R.
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3.14 Getting and Setting Environment Variables

Problem

You want to see the value of an environment variable, or you want to change its value.

Solution

Use the Sys.getenv function to see values. Use Sys.putenv to change them:

> Sys.getenv("SHELL")
SHELL
"/bin/bash"
> Sys.setenv(SHELL="/bin/ksh")

Discussion

Environment variables are often used on Linux and Unix to configure and control the
software. Each process has its own set of environment variables, which are inherited
from its parent process. You sometimes need to see the environment variable settings
for your R process in order to understand its behavior. Likewise, you sometimes need
to change those settings to modify that behavior.

Sometimes I start R in one place but actually want the graphics to appear in a different
place. For example, I might run R on one Linux terminal but want the graphics to
appear on a larger display that an audience can see more easily. Or I might want to run
R on my Linux workstation and have the graphics appear on a colleague’s workstation.
On Linux, R uses the X Windows system for its graphics displays. X Windows chooses
its display device according to an environment variable called DISPLAY. We can use
Sys.getenv to see its value:

> Sys.getenv("DISPLAY")

DISPLAY
":0.0"

All environment variables are string-valued, and here the value is ":0.0"—an obscure
way of saying that the R session is connected to display 0, screen number 0 on my
workstation.
To redirect graphics to the local display at 10.0, we can change DISPLAY in this way:

> Sys.putenv(DISPLAY="1localhost:10.0")
Similarly, we could redirect graphics to display 0, screen 0 on the workstation called
zeus:

> Sys.putenv(DISPLAY="zeus:0.0")

In either event, you must change the DISPLAY variable before drawing your graphic.
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3.15 Locating the R Home Directory

Problem

You need to know the R home directory, which is where the configuration and instal-
lation files are kept.

Solution

R creates an environment variable called R_HOME that you can access by using the
Sys.getenv function:

> Sys.getenv("R_HOME")

Discussion

Most users will never need to know the R home directory. But system administrators
or sophisticated users must know in order to check or change the R installation files.

When R starts, it defines an environment variable (not an R variable) called R_HOME,
which is the path to the R home directory. The Sys.getenv function can retrieve its
value. Here are examples by platform. The exact value reported will almost certainly
be different on your own computer:

On Windows

> Sys.getenv("R_HOME")
R_HOME
"C:\\PROGRA~1\\R\\R-21~1.1"

OnOSX

> Sys.getenv("R_HOME")
"/Library/Frameworks/R.framework/Resources"

On Linux or Unix

> Sys.getenv("R_HOME")
R_HOME
"/usr/1lib/R"
The Windows result looks funky because R reports the old, DOS-style compressed path
name. The full, user-friendly path would be C:\Program Files\R\R-2.10.1 in this case.

On Unix and OS X, you can also run the R program from the shell and use the RHOME
subcommand to display the home directory:

$ R RHOME

Jusr/1ib/R
Note that the R home directory on Unix and OS X contains the installation files but
not necessarily the R executable file. The executable could be in /usr/bin while the R
home directory is, for example, /usr/lib/R.
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3.16 Customizing R

Problem

You want to customize your R sessions by, for instance, changing configuration options
or preloading packages.

Solution

Create a script called .Rprofile that customizes your R session. R will execute
the .Rprofile script when it starts. The placement of .Rprofile depends upon your
platform:

OS X, Linux, or Unix
Save the file in your home directory (~/.Rprofile).

Windows
Save the file in your My Documents directory.

Discussion

R executes profile scripts when it starts, freeing you from repeatedly loading often-used
packages or tweaking the R configuration options.

You can create a profile script called . Rprofile and place it in your home directory (OS
X, Linux, Unix) or your My Documents directory (Windows XP) or Documents direc-
tory (Windows Vista, Windows 7). The script can call functions to customize your
sessions, such as this simple script that loads the MASS package and sets the prompt to
R>:

require(MASS)

options(prompt="R> ")
The profile script executes in a bare-bones environment, so there are limits on what it
can do. Trying to open a graphics window will fail, for example, because the graphics
package is not yet loaded. Also, you should not attempt long-running computations.

You can customize a particular project by putting an . Rprofile file in the directory that
contains the project files. When R starts in that directory, it reads the local .Rprofile
file; this allows you to do project-specific customizations (e.g., loading packages needed
only by the project). However, if R finds a local profile then it does not read the global
profile. That can be annoying, but it’s easily fixed: simply source the global profile from
the local profile. On Unix, for instance, this local profile would execute the global
profile first and then execute its local material:

source("~/.Rprofile")

#

# ... remainder of local .Rprofile...
#
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Setting Options

Some customizations are handled via calls to the options function, which sets the R
configuration options. There are many such options, and the R help page for options
lists them all:

> help(options)
Here are some examples:
browser="path"

Path of default HTML browser
digits=n

Suggested number of digits to print when printing numeric values
editor="path"

Default text editor
prompt="string"

Input prompt
repos="url"

URL for default repository for packages
warn=n

Controls display of warning messages

Loading Packages

Another common customization is the preloading of packages. You may want certain
packages loaded every time you run R because you use them so often. A simple way to
accomplish this is by calling the require function inside your .Rprofile script, like this
call (which loads the tseries package):

require(tseries)
If require generates warning messages that are polluting your output when R starts,
surround it with a suppressMessages function. That’ll muzzle it:

suppressMessages (require(tseries))
Instead of calling require explicitly, you can set a configuration parameter called
defaultPackages. This is the list of packages loaded by R at startup. It initially contains

a system-defined list. If you append package names to the list then R will load them,
too, saving you from having to call library or require yourself.

Here is a clip from my R profile that adjusts the list of loaded packages. I almost always
use the zoo package, so I append it to the defaultPackages list:

pkgs <- getOption("defaultPackages") # Get system list of packages to load

pkgs <- c(pkgs, "zoo" # Append "zoo" to list
options(defaultPackages = pkgs) # Update configuration option
rm(pkgs) # Clean up our temp variable
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One advantage of using defaultPackages is that you can control the placement of the
packages in the search list. Packages appended to the end are loaded last, so in this
example the zoo package will appear at the head of the search list. (Remember that
packages are inserted at the head of the search list when they are loaded.)

The price for always loading the zoo package is that R starts a little more slowly, even
when I don’t really need zoo. In my case, I just was fed up with typing library(zoo)
nearly every time I ran R, so I decided the slower startup was a good trade-off for the
convenience.

Startup Sequence

Here is a simplified overview of what happens when R starts (type help(Startup) to see
the full details):

1. R executes the Rprofile.site script. This is the site-level script that enables system
administrators to override default options with localizations. The script’s full path
is R_HOME/etc/Rprofile.site. (R_HOME is the R home directory; see Recipe 3.15.)

The R distribution does not include an Rprofile.site file. Rather, the system
administrator creates one if it is needed.

2. R executes the .Rprofile script in the working directory; or, if that file does not exist,
executes the .Rprofile script in your home directory. This is the user’s opportunity
to customize R for his or her purposes. The .Rprofile script in the home directory
is used for global customizations. The .Rprofile script in a lower-level directory
can perform specific customizations when R is started there; for instance, custom-
izing R when started in a project-specific directory.

3. R loads the workspace saved in .RData, if that file exists in the working directory. R
saves your workspace in the file called .RData when it exits. It reloads your work-
space from that file, restoring access to your local variables and functions.

4. R executes the .First function, if you defined one. The .First function is a useful
place for users or projects to define startup initialization code. You can define it in
your .Rprofile or in your workspace.

5. R executes the .First.sys function. This step loads the default packages. The func-
tion is internal to R and not normally changed by either users or administrators.

Observe that R does not load the default packages until the final step, when it executes
the .First.sys function. Before that, only the base package has been loaded. This is a
key fact because it means the previous steps cannot assume that packages other than
the base are available. It also explains why trying to open a graphical window in
your .Rprofile script fails: the graphics packages aren’t loaded yet.

See Also

See Recipe 3.6 for more about loading packages. See the R help page for Startup
(help(Startup)) and the R help page for options (help(options)).
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CHAPTER 4
Input and Output

Introduction

All statistical work begins with data, and most data is stuck inside files and databases.
Dealing with input is probably the first step of implementing any significant statistical
project.

All statistical work ends with reporting numbers back to a client, even if you are the
client. Formatting and producing output is probably the climax of your project.

Casual R users can solve their input problems by using basic functions such as
read.csv toread CSV files and read. table to read more complicated, tabular data. They
can use print, cat, and format to produce simple reports.

Users with heavy-duty input/output (I/O) needs are strongly encouraged to read the
R Data Import/Export guide, available on CRAN at http://cran.r-project.org/doc/man
uals/R-data.pdf. This manual includes important information on reading data from
sources such as spreadsheets, binary files, other statistical systems, and relational
databases.

A Philosophical Note

Several of my Statistical Analysis System (SAS) friends are disappointed with the input
facilities of R. They point out that SAS has an elaborate set of commands for reading
and parsing input files in many formats. R does not, and this leads them to conclude
that R is not ready for real work. After all, if it can’t read your data, what good is it?

[ think they do not understand the design philosophy behind R, which is based on a
statistical package called S. The authors of S worked at Bell Labs and were steeped in
the Unix design philosophy. A keystone of that philosophy is the idea of modular
tools. Programs in Unix are not large, monolithic programs that try to do everything.
Instead, they are smaller, specialized tools that each do one thing well. The Unix user
joins the programs together like building blocks, creating systems from the
components.

n

www.it-ebooks.info


http://www.it-ebooks.info

R does statistics and graphics well. Very well, in fact. It is superior in that way to many
commercial packages.

R is not a great tool for preprocessing data files, however. The authors of S assumed
you would perform that munging with some other tool: perl, awk, sed, cut, paste,
whatever floats your boat. Why should they duplicate that capability?

If your data is difficult to access or difficult to parse, consider using an outboard tool
to preprocess the data before loading it into R. Let R do what R does best.

4.1 Entering Data from the Keyboard

Problem

You have a small amount of data, too small to justify the overhead of creating an input
file. You just want to enter the data directly into your workspace.

Solution

For very small datasets, enter the data as literals using the c() constructor for vectors:
> scores <- c(61, 66, 90, 88, 100)

Alternatively, you can create an empty data frame and then invoke the built-in,

spreadsheet-like editor to populate it:

> scores <- data.frame() # Create empty data frame
> scores <- edit(score) # Invoke editor, overwrite with edited data

On Windows, you can also invoke the editor by selecting Edit - Data frame... from the
menu.

Discussion

When I am working on a toy problem, I don’t want the hassle of creating and then
reading the data file. I just want to enter the data into R. The easiest way is by using
the ¢() constructor for vectors, as shown in the Solution.

This approach works for data frames, too, by entering each variable (column) as a
vector:

> points <- data.frame(

+ label=c("Low", "Mid", "High"),

+ 1bound=c( 0, 0.67, 1.64),

+ ubound=c(0.674, 1.64, 2.33)
+

See Also

See Recipe 5.26 for more about using the built-in data editor, as suggested in the
Solution.
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4.2 Printing Fewer Digits (or More Digits)

Problem

Your output contains too many digits or too few digits. You want to print fewer or more.

Solution
For print, the digits parameter can control the number of printed digits.

For cat, use the format function (which also has a digits parameter) to alter the for-
matting of numbers.

Discussion

R normally formats floating-point output to have seven digits:

> pi

[1] 3.141593
> 100*pi

[1] 314.1593

This works well most of the time but can become annoying when you have lots of
numbers to print in a small space. It gets downright misleading when there are only a
few significant digits in your numbers and R still prints seven.

The print function lets you vary the number of printed digits using the digits
parameter:

> print(pi, digits=4)

[1] 3.142

> print(100*pi, digits=4)

[1] 314.2
The cat function does not give you direct control over formatting. Instead, use the
format function to format your numbers before calling cat:

> cat(pi, "\n")

3.141593

> cat(format(pi,digits=4), "\n")

3.142

This is R, so both print and format will format entire vectors at once:

> pnorm(-3:3)

[1] 0.001349898 0.022750132 0.158655254 0.500000000 0.841344746 0.977249868
[7] 0.998650102

> print(pnorm(-3:3), digits=3)

[1] 0.00135 0.02275 0.15866 0.50000 0.84134 0.97725 0.9986

Notice that print formats the vector elements consistently: finding the number of digits
necessary to format the smallest number and then formatting all numbers to have the

same width (though not necessarily the same number of digits). This is extremely useful
for formating an entire table:
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> q <- seq(from=0,to=3,by=0.5)
> tbl <- data.frame(Quant=q, Lower=pnorm(-q), Upper=pnorm(q))

> tbl # Unformatted print
Quant Lower Upper

1 0.0 0.500000000 0.5000000

2 0.5 0.308537539 0.6914625

3 1.0 0.158655254 0.8413447

4 1.5 0.066807201 0.9331928

5 2.0 0.022750132 0.9772499

6 2.5 0.006209665 0.9937903

7 3.0 0.001349898 0.9986501

> print(tbl,digits=2) # Formatted print: fewer digits
Quant Lower Upper

1 0.0 0.5000 0.50

2 0.5 0.3085 0.69

3 1.0 0.1587 0.84

4 1.5 0.0668 0.93

5 2.0 0.0228 0.98

6 2.5 0.0062 0.99

7 3.0 0.0013 1.00

You can also alter the format of all output by using the options function to change the
default for digits:

> pi

[1] 3.141593

> options(digits=15)
> pi

[1] 3.14159265358979

But this is a poor choice in my experience, since it also alters the output from R’s built-
in functions, and that alteration will likely be unpleasant.

See Also

Other functions for formatting numbers include sprintf and formatC; see their help
pages for details.

4.3 Redirecting Output to a File

Problem

You want to redirect the output from R into a file instead of your console.

Solution

You can redirect the output of the cat function by using its file argument:

> cat("The answer is", answer, "\n", file="filename")
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Use the sink function to redirect all output from both print and cat. Call sink with a
filename argument to begin redirecting console output to that file. When you are done,
use sink with no argument to close the file and resume output to the console:

> sink("filename") # Begin writing output to file
. other session work . . .

> sink() # Resume writing output to console

Discussion

The print and cat functions normally write their output to your console. The cat func-
tion writes to a file if you supply a file argument, which can be either a filename or a
connection. The print function cannot redirect its output, but the sink function can
force all output to a file. A common use for sink is to capture the output of an R script:

> sink("script_output.txt") # Redirect output to file
> source("script.R") # Run the script, capturing its output
> sink() # Resume writing output to console

If you are repeatedly cating items to one file, be sure to set append=TRUE. Otherwise,
each call to cat will simply overwrite the file’s contents:
cat(data, file="analysisReport.out")

cat(results, file="analysisRepart.out", append=TRUE)
cat(conclusion, file="analysisReport.out", append=TRUE)

Hard-coding file names like this is a tedious and error-prone process. Did you notice
that the filename is misspelled in the second line? Instead of hard-coding the filename
repeatedly, I suggest opening a connection to the file and writing your output to the
connection:

non

con <- file("analysisReport.out"”, "w")
cat(data, file=con)

cat(results, file=con)

cat(conclusion, file=con)

close(con)

(You don’t need append=TRUE when writing to a connection because it’s implied.) This
technique is especially valuable inside R scripts because it makes your code more reli-
able and more maintainable.

4.4 Listing Files

Problem

You want to see a listing of your files without the hassle of switching to your file browser.
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Solution

The list.files function shows the contents of your working directory:
> list.files()

Discussion
This function is just plain handy. If T can’t remember the name of my data file (was it
sample_data.csv or sample-data.csv?), 1 do a quick list.files to refresh my memory:

> list.files()
[1] "sample-data.csv

non

script.R"
To see all the files in your subdirectories, too, use list.files(recursive=T).

A possible “gotcha” of list.files is that it ignores hidden files—typically, any file
whose name begins with a period. If you don’t see the file you expected to see, try
setting all.files=TRUE:

> list.files(all.files=TRUE)

See Also

R has other handy functions for working with files; see help(files).

4.5 Dealing with “Cannot Open File” in Windows

Problem

You are running R on Windows, and you are using file names such as
C:\data\sample.txt. R says it cannot open the file, but you know the file does exist.

Solution

The backslashes in the file path are causing trouble. You can solve this problem in one
of two ways:

* Change the backslashes to forward slashes: "C:/data/sample.txt".
¢ Double the backslashes: "C:\\data\\sample.txt".

Discussion

When you open a file in R, you give the file name as a character string. Problems arise
when the name contains backslashes (\) because backslashes have a special meaning
inside strings. You’ll probably get something like this:

> samp <- read.csv("C:\Data\sample-data.csv")

Error in file(file, "rt") : cannot open the connection

In addition: Warning messages:
1: '\D' is an unrecognized escape in a character string
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2: '\s' is an unrecognized escape in a character string
3: unrecognized escapes removed from "C:\Data\sample-data.csv"
4: In file(file, "rt") :
cannot open file 'C:Datasample-data.csv': No such file or directory

R escapes every character that follows a backslash and then removes the backslashes.
That leaves a meaningless file path, such as C:Datasample-data.csv in this example.

The simple solution is to use forward slashes instead of backslashes. R leaves the for-
ward slashes alone, and Windows treats them just like backslashes. Problem solved:

> samp <- read.csv("C:/Data/sample-data.csv")
>

An alternative solution is to double the backslashes, since R replaces two consecutive
backslashes with a single backslash:

> samp <- read.csv("C:\\Data\\sample-data.csv")
>

4.6 Reading Fixed-Width Records

Problem

You are reading data from a file of fixed-width records: records whose data items occur
at fixed boundaries.

Solution

Read the file using the read.fwf function. The main arguments are the file name and
the widths of the fields:

> records <- read.fwf("filename", widths=c(wy, Wy, ..., W,))

Discussion

Suppose we want to read an entire file of fixed-width records, such as fixed-width.txt,
shown here:

Fisher R.A. 1890 1962
Pearson Karl 1857 1936
Cox Gertrude 1900 1978

Yates Frank 1902 1994
Smith Kirstine 1878 1939

We need to know the column widths. In this case the columns are: last name, 10 char-
acters; first name, 10 characters; year of birth, 4 characters; and year of death, 4 char-
acters. In between the two last columns is a 1-character space. We can read the file this
way:

> records <- read.fwf("fixed-width.txt", widths=c(10,10,4,-1,4))
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The -1 in the widths argument says there is a one-character column that should be
ignored. The result of read. fwf is a data frame:

> records

Vi V2. V3 V4
1 Fisher R.A. 1890 1962
2 Pearson Karl 1857 1936
3 Cox Gertrude 1900 1978
4 Yates Frank 1902 1994
5 Smith Kirstine 1878 1939

Note that R supplied some funky, synthetic column names. We can override that de-
fault by using a col.names argument:

> records <- read.fwf("fixed-width.txt", widths=c(10,10,4,-1,4),

+ col.names=c("Last","First","Born","Died"))
> records
Last First Born Died
1 Fisher R.A. 1890 1962
2 Pearson Karl 1857 1936
3 Cox Gertrude 1900 1978
4 Yates Frank 1902 1994
5 Smith Kirstine 1878 1939

read.fwf interprets nonnumeric data as a factor (categorical variable) by default. For
instance, the Last and First columns just displayed were interpreted as factors. Set
stringsAsFactors=FALSE to have the function read them as character strings.

The read. fwf function has many bells and whistles that may be useful for reading your
data files. It also shares many bells and whistles with the read.table function. I suggest
reading the help pages for both functions.

See Also

See Recipe 4.7 for more discussion of reading text files.

4.7 Reading Tabular Data Files

Problem

You want to read a text file that contains a table of data.

Solution

Use the read.table function, which returns a data frame:

> dfrm <- read.table("filename")

Discussion

Tabular data files are quite common. They are text files with a simple format:
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¢ Each line contains one record.

* Within each record, fields (items) are separated by a one-character delimiter, such
as a space, tab, colon, or comma.

¢ Each record contains the same number of fields.

This format is more free-form than the fixed-width format because fields needn’t be
aligned by position. Here is the data file of Recipe 4.6 in tabular format, using a space
character between fields:

Fisher R.A. 1890 1962

Pearson Karl 1857 1936

Cox Gertrude 1900 1978

Yates Frank 1902 1994
Smith Kirstine 1878 1939

The read.table function is built to read this file. By default, it assumes the data fields
are separated by white space (blanks or tabs):

> dfrm <- read.table("statisticians.txt")

> print(dfrm)

Vi V2. V3 V4

1 Fisher R.A. 1890 1962

2 Pearson Karl 1857 1936

3 Cox Gertrude 1900 1978

4  Yates Frank 1902 1994

5 Smith Kirstine 1878 1939

If your file uses a separator other than white space, specify it using the sep parameter.
If our file used colon (:) as the field separator, we would read it this way:

> dfrm <- read.table("statisticians.txt", sep=":")

You cannot tell from the printed output, but read.table interpreted the first and last
names as factors, not strings. We see that by checking the class of the resulting column:

> class(dfrm$vi)
[1] "factor"

To prevent read.table from interpreting character strings as factors, set the
stringsAsFactors parameter to FALSE:
> dfrm <- read.table("statisticians.txt", stringsAsFactor=FALSE)

> class(dfrm$vi)
[1] "character"

Now the class of the first column is character, not factor.

If any field contains the string “NA”, then read. table assumes that the value is missing
and converts it to NA. Your data file might employ a different string to signal missing
values, in which case use the na.strings parameter. The SAS convention, for example,
is that missing values are signaled by a single period (.). We can read such data files in
this way:

> dfrm <- read.table("filename.txt", na.strings=".")
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[ am a huge fan of self-describing data: data files which describe their own contents. (A
computer scientist would say the file contains its own metadata.) The read.table func-
tion has two features that support this characteristic. First, you can include a header
line at the top of your file that gives names to the columns. The line contains one name
for every column, and it uses the same field separator as the data. Here is our data file
with a header line that names the columns:

lastname firstname born died

Fisher R.A. 1890 1962

Pearson Karl 1857 1936

Cox Gertrude 1900 1978

Yates Frank 1902 1994
Smith Kirstine 1878 1939

Now we can tell read.table that our file contains a header line, and it will use the
column names when it builds the data frame:
> dfrm <- read.table("statisticians.txt", header=TRUE, stringsAsFactor=FALSE)

> print(dfrm)
lastname firstname born died

1 Fisher R.A. 1890 1962
2 Pearson Karl 1857 1936
3 Cox Gertrude 1900 1978
4 Yates Frank 1902 1994
5 Smith Kirstine 1878 1939

The second feature of read.table is comment lines. Any line that begins with a pound
sign (#) is ignored, so you can put comments on those lines:

# This is a data file of famous statisticians.

# Last edited on 1994-06-18

lastname firstname born died

Fisher R.A. 1890 1962

Pearson Karl 1857 1936

Cox Gertrude 1900 1978

Yates Frank 1902 1994

Smith Kirstine 1878 1939

read.table has many parameters for controlling how it reads and interprets the input
file. See the help page for details.

See Also

If your data items are separated by commas, see Recipe 4.8 for reading a CSV file.

4.8 Reading from CSV Files

Problem

You want to read data from a comma-separated values (CSV) file.
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Solution

The read.csv function can read CSV files. If your CSV file has a header line, use this:

> tbl <- read.csv("filename")

If your CSV file does not contain a header line, set the header option to FALSE:
> tbl <- read.csv("filename", header=FALSE)

Discussion

The CSV file format is popular because many programs can import and export data in
that format. Such programs include R, Excel, other spreadsheet programs, many
database managers, and most statistical packages. It is a flat file of tabular data, where
each line in the file is a row of data, and each row contains data items separated by
commas. Here is a very simple CSV file with three rows and three columns (the first
line is a header line that contains the column names, also separated by commas):

label, 1bound,ubound

low,0,0.674

mid,0.674,1.64
high,1.64,2.33

The read.csv file reads the data and creates a data frame, which is the usual R repre-
sentation for tabular data. The function assumes that your file has a header line unless
told otherwise:

> tbl <- read.csv("table-data.csv")

> tbl

label 1bound ubound

1 low 0.000 0.674

2 mid 0.674 1.640

3 high 1.640 2.330

Observe that read. csv took the column names from the header line for the data frame.
If the file did not contain a header, then we would specify header=FALSE and R would
synthesize column names for us (V1, V2, and V3 in this case):

> tbl <- read.csv("table-data-with-no-header.csv", header=FALSE)

> tbl

Vi V2 V3

1 low 0.000 0.674

2 mid 0.674 1.640

3 high 1.640 2.330

A good feature of read.csv is that is automatically interprets nonnumeric data as a
factor (categorical variable), which is often what you want since after all this is a
statistical package, not Perl. The label variable in the tbl data frame just shown is
actually a factor, nota character variable. You see that by inspecting the structure of tbl:
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> str(tbl)

'data.frame': 3 obs. of 3 variables:

$ label : Factor w/ 3 levels "high","low","mid": 2 3 1
$ lbound: num 0 0.674 1.64

$ ubound: num 0.674 1.64 2.33

Sometimes you really want your data interpreted as strings, not as a factor. In that case,
set the as.is parameter to TRUE; this indicates that R should not interpret nonnumeric
data as a factor:

> tbl <- read.csv("table-data.csv", as.is=TRUE)
> str(tbl)

'data.frame': 3 obs. of 3 variables:

$ label : chr "low" "mid" "high"

$ lbound: num 0 0.674 1.64

$ ubound: num 0.674 1.64 2.33

Notice that the label variable now has character-string values and is no longer a factor.

Another useful feature is that input lines starting with a pound sign (#) are ignored,
which lets you embed comments in your data file. Disable this feature by specifying

comment.char="".

The read. csv function has many useful bells and whistles. These include the ability to
skip leading lines in the input file, control the conversion of individual columns, fill out
short rows, limit the number of lines, and control the quoting of strings. See the R help
page for details.

See Also
See Recipe 4.9. See the R help page for read.table, which is the basis for read. csv.

4.9 Writing to CSV Files

Problem

You want to save a matrix or data frame in a file using the comma-separated values
format.

Solution

The write.csv function can write a CSV file:

> write.csv(x, file="filename", row.names=FALSE)

Discussion

The write.csv function writes tabular data to an ASCII file in CSV format. Each row
of data creates one line in the file, with data items separated by commas (,):

> print(tbl)
label 1lbound ubound
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1 low 0.000 0.674
2 mid 0.674 1.640
3 high 1.640 2.330
> write.csv(tbl, file="table-data.csv", row.names=T)

This example creates a file called table-data.csv in the current working directory. The
file looks like this:

"label","1bound", "ubound"

"low",0,0.674

"mid",0.674,1.64

"high",1.64,2.33
Notice that the function writes a column header line by default. Set col.names=FALSE
to change that.

If we do not specify row.names=FALSE, the function prepends each row with a label taken
from the row.names attribute of your data. If your data doesn’t have row names then
the function just uses the row numbers, which creates a CSV file like this:

" "label","1lbound","ubound"
"1","low",0,0.674
"2","mid",0.674,1.64
"3","high",1.64,2.33

I rarely want row labels in my CSV files, which is why I recommend setting
row.names=FALSE.

The function is intentionally inflexible. You cannot easily change the defaults because
it really, really wants to write files in a valid CSV format. Use the write.table function
to save your tabular data in other formats.

A sad limitation of write.csv is that it cannot append lines to a file. Use write.table
instead.

See Also

See Recipe 3.1 for more about the current working directory and Recipe 4.14 for other
ways to save data to files.

4.10 Reading Tabular or CSV Data from the Web

Problem

You want to read data directly from the Web into your R workspace.

Solution

Use the read.csv, read.table, and scan functions, but substitute a URL for a file name.
The functions will read directly from the remote server:

> tbl <- read.csv("http://www.example.com/download/data.csv")
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You can also open a connection using the URL and then read from the connection,
which may be preferable for complicated files.

Discussion

The Web is a gold mine of data. You could download the data into a file and then read
the file into R, but it’s more convenient to read directly from the Web. Give the URL
to read.csv, read.table, or scan (depending upon the format of the data), and the data
will be downloaded and parsed for you. No fuss, no muss.

Aside from using a URL, this recipe is just like reading from a CSV file (Recipe 4.8) or
a complex file (Recipe 4.12), so all the comments in those recipes apply here, too.

Remember that URLs work for FTP servers, not just HTTP servers. This means that R
can also read data from FTP sites using URLs:

> tbl <- read.table("ftp://ftp.example.com/download/data.txt")

See Also
See Recipes 4.8 and 4.12.

4.11 Reading Data from HTML Tables

Problem

You want to read data from an HTML table on the Web.

Solution

Use the readHTMLTable function in the XML package. To read all tables on the page, simply
give the URL:
> library(XML)

> url <- 'http://www.example.com/data/table.html’
> tbls <- readHTMLTable(url)

To read only specific tables, use the which parameter. This example reads the third table
on the page:
> tbl <- readHTMLTable(url, which=3)

Discussion

Web pages can contain several HTML tables. Calling readHTMLTable(url) reads all ta-
bles on the page and returns them in a list. This can be useful for exploring a page, but
it’s annoying if you want just one specific table. In that case, use which=n to select the
desired table. You’ll get only the nth table.
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The following example, which is taken from the help page for readHTMLTable, loads all
tables from the Wikipedia page entitled “World population”:

> library(XML)
> url <- "http://en.wikipedia.org/wiki/World_population’
> tbls <- readHTMLTable(url)

As it turns out, that page contains 17 tables:

> length(tbls)
[1] 17

In this example we care only about the third table (which lists the largest populations
by country), so we specify which=3:

> tbl <- readHTMLTable(url, which=3)

In that table, columns 2 and 3 contain the country name and population, respectively:

> tbl[,c(2,3)]

Country / Territory  Population
1 A People's Republic of China[44] 1,338,460,000
2 A India 1,182,800,000
3 A United States 309,659,000
4 A Indonesia 231,369,500
5 A Brazil 193,152,000
6 A pakistan 169,928,500
7 A Bangladesh 162,221,000
8 A Nigeria 154,729,000
9 A Russia 141,927,297
1

0 A Japan 127,530,000
11 A Mexico 107,550,697
12 A Philippines 92,226,600
13 A vietnam 85,789,573
14 A Germany 81,882,342
15 A Ethiopia 79,221,000
16 A Egypt 78,459,000

Right away, we can see problems with the data: the country names have some funky
Unicode character stuck to the front. I don’t know whys; it probably has something to
do with formatting the Wikipedia page. Also, the name of the People’s Republic of
China has “[44]” appended. On the Wikipedia website, that was a footnote reference,
but now it’s just a bit of unwanted text. Adding insult to injury, the population numbers
have embedded commas, so you cannot easily convert them to raw numbers. All these
problems can be solved by some string processing, but each problem adds at least one
more step to the process.

This illustrates the main obstacle to reading HTML tables. HTML was designed for
presenting information to people, not to computers. When you “scrape” information
off an HTML page, you get stuff that’s useful to people but annoying to computers. If
you ever have a choice, choose instead a computer-oriented data representation such
as XML, JSON, or CSV.
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The readHTMLTable function is part of the XML package, which (by necessity) is large and
complex. The XML package depends on a software library called 1ibxml12, which you will
need to obtain and install first. On Linux, you will also need the Linux package
xml2-config, which is necessary for building the R package.

See Also
See Recipe 3.9 for downloading and installing packages such as the XML package.

4.12 Reading Files with a Complex Structure

Problem

You are reading data from a file that has a complex or irregular structure.

Solution
* Use the readlines function to read individual lines; then process them as strings
to extract data items.

* Alternatively, use the scan function to read individual tokens and use the argument
what to describe the stream of tokens in your file. The function can convert tokens
into data and then assemble the data into records.

Discussion

Life would be simple and beautiful if all our data files were organized into neat tables
with cleanly delimited data. We could read those files using read. table and get on with
living.

Dream on.

You will eventually encounter a funky file format, and your job—no matter how
painful—is to read the file contents into R. The read. table and read. csv functions are
line-oriented and probably won’t help. However, the readLines and scan functions are
useful here because they let you process the individual lines and even tokens of the file.

The readLines function is pretty simple. It reads lines from a file and returns them as
a list of character strings:

> lines <- readLines("input.txt")
You can limit the number of lines by using the n parameter, which gives the number of
maximum number of lines to be read:

> lines <- readLines("input.txt", n=10) # Read 10 lines and stop
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The scan function is much richer. It reads one token at a time and handles it according
to your instructions. The first argument is either a filename or a connection (more on
connections later). The second argument is called what, and it describes the tokens that
scan should expect in the input file. The description is cryptic but quite clever:

what=numeric(0)

Interpret the next token as a number.
what=integer(0)

Interpret the next token as an integer.
what=complex(0)

Interpret the next token as complex number.
what=character(0)

Interpret the next token as a character string.
what=1ogical(0)

Interpret the next token as a logical value.

The scan function will apply the given pattern repeatedly until all data is read.

Suppose your file is simply a sequence of numbers, like this:
2355.09 2246.73 1738.74 1841.01 2027.85

Use what=numeric(0) to say, “My file is a sequence of tokens, each of which is a
number”:

> singles <- scan("singles.txt", what=numeric(0))

Read 5 items

> singles

[1] 2355.09 2246.73 1738.74 1841.01 2027.85

A key feature of scan is that the what can be a list containing several token types. The
scan function will assume your file is a repeating sequence of those types. Suppose your
file contains triplets of data, like this:

15-0ct-87 2439.78 2345.63 16-0ct-87 2396.21 2,207.73

19-0ct-87 2164.16 1677.55 20-0ct-87 2067.47 1,616.21
21-0ct-87 2081.07 1951.76

Use a list to tell scan that it should expect a repeating, three-token sequence:

> triples <- scan("triples.txt", what=1list(character(0),numeric(0),numeric(0)))

Give names to the list elements, and scan will assign those names to the data:

> triples <- scan("triples.txt",

+ what=1list(date=character(0), high=numeric(0), low=numeric(0)))
Read 5 records

> triples

$date

[1] "15-Oct-87" "16-Oct-87" "19-Oct-87" "20-Oct-87" "21-Oct-87"

$high
[1] 2439.78 2396.21 2164.16 2067.47 2081.07
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$low
[1] 2345.63 2207.73 1677.55 1616.21 1951.76

The scan function has many bells and whistles, but the following are especially useful:

n=number
Stop after reading this many tokens. (Default: stop at end of file.)

nlines=number
Stop after reading this many input lines. (Default: stop at end of file.)

skip=number

Number of input lines to skip before reading data.
na.strings=1ist

A list of strings to be interpreted as NA.

An Example

Let’s use this recipe to read a dataset from StatLib, the repository of statistical data
and software maintained by Carnegie Mellon University. Jeff Witmer contributed a
dataset called wseries that shows the pattern of wins and losses for every World Series
since 1903. The dataset is stored in an ASCII file with 35 lines of comments followed
by 23 lines of data. The data itself looks like this:

1903  LWLIwwwW 1927  wwhilW 1950  wwhiW 1973  WLwllWW
1905 wLwiW 1928  Whiww 1951  LWlwwW 1974  wlWWW
1906 wLwLwW 1929  wwLWW 1952 1wLWlww 1975 IwWLWlw
1907  Whww 1930 WWIIwW 1953  WW1IwW 1976 Whiww
1908  whLww 1931 LWwlwLW 1954  Wiww 1977 WLwwlW
. (etc.)

The data is encoded as follows: L = loss at home, 1 = loss on the road, W = win at home,
w = win on the road. The data appears in column order, not row order, which com-
plicates our lives a bit.

Here is the R code for reading the raw data:

# Read the wseries dataset:

# - Skip the first 35 lines

# - Then read 23 lines of data

# - The data occurs in pairs: a year and a pattern (char string)

#

world.series <- scan("http://lib.stat.cmu.edu/datasets/wseries"”,
skip = 35,

nlines = 23,

what = list(year = integer(0),
pattern = character(0)),

)
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The scan function returns a list, so we get a list with two elements: year and pattern.
The function reads from left to right, but the dataset is organized by columns and so
the years appear in a strange order:

> world.series$year
[1] 1903 1927 1950 1973 1905 1928 1951 1974 1906 1929 1952
[12] 1975 1907 1930 1953 1976 1908 1931 1954 1977 1909 1932

: (etc.)

We can fix that by sorting the list elements according to year:

> perm <- order(world.series$year)
> world.series <- list(year = world.series$year[perm],
+ pattern = world.series$pattern[perm])

Now the data appears in chronological order:

> world.series$year
[1] 1903 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
[12] 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925

: (etc.)

> world.series$pattern

[1] "LWLIwwwW" "wLwiW" "wlwlwW" " WRww" "wiLww"
[6] "WLwlWlw" "Wwwlw" " TwW1W" "WLwWILW"  "wlwiw"
[12] "wwhiW" " Twiw" "WIW1wh" "WW11Ww"  "wlwWLW"
[16] "WWlwwLLw" "wllWWWW" "LIWwLwiw" "Wwh" " LwLwhiw"

(etc.)

4.13 Reading from MySQL Databases

Problem

You want access to data stored in a MySQL database.

Solution
1. Install the RMySQL package on your computer.

2. Open a database connection using the dbConnect function.
3. Use dbGetQuery to initiate a SELECT and return the result sets.

4. Use dbDisconnect to terminate the database connection when you are done.
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Discussion

This recipe requires that the RMySQL package be installed on your computer. That pack-
age requires, in turn, the MySQL client software. If the MySQL client software is not
already installed and configured, consult the MySQL documentation or your system
administrator.

Use the dbConnect function to establish a connection to the MySQL database. It returns
a connection object which is used in subsequent calls to RMySQL functions:
library(RMySQL)

con <- dbConnect(MySQL(), user="userid", password="pswd",
host="hostname", client.flag=CLIENT_MULTI_RESULTS)

Setting client.flag=CLIENT MULTI RESULTS is necessary to correctly handle multiple re-
sult sets. Even if your queries return a single result set, you must set client.flag this
way because MySQL might include additional status result sets after your data.

The username, password, and host parameters are the same parameters used for ac-
cessing MySQL through the mysql client program. The example given here shows them
hard-coded into the dbConnect call. Actually, that is an ill-advised practice. It puts your
password out in the open, creating a security problem. It also creates a major headache
whenever your password or host change, requiring you to hunt down the hard-coded
values. I strongly recommend using the security mechanism of MySQL instead. Put
those three parameters into your MySQL configuration file, which is SHOME/.my.cnf
on Unix and C:\my.cnf on Windows. Make sure the file is unreadable by anyone except
you. The file is delimited into sections with markers such as [client]. Put the parameters
into the [client] section, so that your config file will contain something like this:

[client]

user = userid

password = password
host = hostname

Once the parameters are defined in the config file, you no longer need to supply them
in the dbConnect call, which then becomes much simpler:

con <- dbConnect(MySQL(), client.flag=CLIENT MULTI_RESULTS)

Use the dbGetQuery function to submit your SQL to the database and read the result
sets. Doing so requires an open database connection:

sql <- "SELECT * from SurveyResults WHERE City = 'Chicago'"
rows <- dbGetQuery(con, sql)

You will need to construct your own SQL query, of course; this is just an example. You
are not restricted to SELECT statements. Any SQL that generates a result set is OK. I
generally use CALL statements, for example, because all my SQL is encapsulated in
stored procedures and those stored procedures contain embedded SELECT statements.
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Using dbGetQuery is convenient because it packages the result set into a data frame and
returns the data frame. This is the perfect representation of an SQL result set. The result
set is a tabular data structure of rows and columns, and so is a data frame. The result
set’s columns have names given by the SQL SELECT statement, and R uses them for
naming the columns of the data frame.

After the first result set of data, MySQL can return a second result set containing status
information. You can choose to inspect the status or ignore it, but you must read it.
Otherwise, MySQL will complain that there are unprocessed result sets and then halt.
So call dbNextResult if necessary:

if (dbMoreResults(con)) dbNextResult(con)

Call dbGetQuery repeatedly to perform multiple queries, checking for the result status
after each call (and reading it, if necessary). When you are done, close the database
connection using dbDisconnect:

dbDisconnect(con)

Here is a complete session that reads and prints three rows from my database of stock
prices. The query selects the price of IBM stock for the last three days of 2008. It assumes
that the username, password, and host are defined in the my.cnf file:

> con <- dbConnect(MySQL(), client.flag=CLIENT_MULTI_RESULTS)

> sql <- paste("select * from DailyBar where Symbol = 'IBM'",
+ "and Day between '2008-12-29' and '2008-12-31'")
> rows <- dbGetQuery(con, sql)

> if (dbMoreResults(con)) dbNextResults(con)

>

print(rows)
Symbol Day Next OpenPx HighPx LowPx ClosePx AdjClosePx
1 IBM 2008-12-29 2008-12-30 81.72 81.72 79.68 81.25 81.25
2 IBM 2008-12-30 2008-12-31 81.83 83.64 81.52 83.55 83.55
3 IBM 2008-12-31 2009-01-02 83.50 85.00 83.50 84.16 84.16
HistClosePx Volume OpenInt
1 81.25 6062600 NA
2 83.55 5774400 NA
3 84.16 6667700 NA
> dbDisconnect(con)
[1] TRUE
See Also

See Recipe 3.9 and the documentation for RMySQL, which contains more details about
configuring and using the package.

R can read from several other RDBMS systems, including Oracle, Sybase, PostgreSQL,
and SQLite. For more information, see the R Data Import/Export guide, which is sup-
plied with the base distribution (Recipe 1.6) and is also available on CRAN at http://
cran.r-project.org/doc/manuals/R-data.pdf.
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4.14 Saving and Transporting Objects

Problem

You want to store one or more R objects in a file for later use, or you want to copy an
R object from one machine to another.

Solution

Write the objects to a file using the save function:

> save(myData, file="myData.RData")

Read them back using the load function, either on your computer or on any platform
that supports R:

> load("myData.RData")

The save function writes binary data. To save in an ASCII format, use dput or dump
instead:

> dput(myData, file="myData.txt")
> dump("myData", file="myData.txt") # Note quotes around variable name

Discussion

I normally save my data in my workspace, but sometimes I need to save data outside
my workspace. I may have a large, complicated data object that I want to load into
other workspaces, or I may want to move R objects between my Linux box and my
Windows box. The load and save functions let me do all this: save will store the object
in a file that is portable across machines, and load can read those files.

When you run load, it does not return your data per se; rather, it creates variables in
your workspace, loads your data into those variables, and then returns the names of
the variables (in a list). The first time I used load, I did this:

> myData <- load("myFile.RData") # Achtung! Might not do what you think

[ was extremely puzzled because myData did not contain my data at all and because my
variables had mysteriously appeared in my workspace. Eventually, I broke down and
read the documentation for load, which explained everything.

The save function writes in a binary format to keep the file small. Sometimes you want
an ASCII format instead. When you submit a question to a mailing list, for example,
including an ASCII dump of the data lets others re-create your problem. In such cases
use dput or dump, which write an ASCII representation.

Be careful when you save and load objects created by a particular R package. When
you load the objects, R does not automatically load the required packages, too, so it
will not “understand” the object unless you previously loaded the package yourself.
For instance, suppose you have an object called z created by the zoo package, and
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suppose we save the object in a file called z.RData. The following sequence of functions
will create some confusion:

> load("z.RData") # Create and populate the z variable
> plot(z) # Does not plot what we expected: zoo pkg not loaded

We should have loaded the zoo package before printing or plotting any zoo objects, like
this:

> library(zoo) # Load the zoo package into memory
> load("z.RData") # Create and populate the z variable
> plot(z) # Ahhh. Now plotting works correctly
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CHAPTER5
Data Structures

Introduction

You can get pretty far in R just using vectors. That’s what Chapter 2 is all about. This
chapter moves beyond vectors to recipes for matrices, lists, factors, and data frames. If
you have preconceptions about data structures, I suggest you put them aside. R does
data structures differently.

If you want to study the technical aspects of R’s data structures, I suggest reading R in
a Nutshell (O’Reilly) and the R Language Definition. My notes here are more informal.
These are things I wish I'd known when I started using R.

Vectors
Here are some key properties of vectors:

Vectors are homogeneous
All elements of a vector must have the same type or, in R terminology, the same
mode.

Vectors can be indexed by position
So v[2] refers to the second element of v.

Vectors can be indexed by multiple positions, returning a subvector
So v[c(2,3)] is a subvector of v that consists of the second and third elements.

Vector elements can have names
Vectors have a names property, the same length as the vector itself, that gives names
to the elements:

> v <- c(10, 20, 30)
> names(v) <- c("Moe", "Larry", "Curly")
> print(v)

Moe Larry Curly

10 20 30
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If vector elements have names then you can select them by name
Continuing the previous example:
> v["Larry"]

Larry
20

Lists

Lists are heterogeneous
Lists can contain elements of different types; in R terminology, list elements may
have different modes. Lists can even contain other structured objects, such as lists
and data frames; this allows you to create recursive data structures.

Lists can be indexed by position
So 1st[[2]] refers to the second element of 1st. Note the double square brackets.

Lists let you extract sublists
So 1st[c(2,3)] is a sublist of 1st that consists of the second and third elements.
Note the single square brackets.

List elements can have names
Both 1st[["Moe"]] and 1st$Moe refer to the element named “Moe”.

Since lists are heterogeneous and since their elements can be retrieved by name, a
list is like a dictionary or hash or lookup table in other programming languages
(Recipe 5.9). What’s surprising (and cool) is that in R, unlike most of those other
programming languages, lists can also be indexed by position.

Mode: Physical Type

In R, every object has a mode, which indicates how it is stored in memory: as a number,
as a character string, as a list of pointers to other objects, as a function, and so forth:

Object Example Mode
Number 3.1415 numeric
Vector of numbers c(2.7.182, 3.1415) numeric
Character string "Moe" character
Vector of character strings ~ c("Moe", "Larry", "Curly") character
Factor factor(c("NY", "CA", "IL")) numeric
List list("Moe", "Larry", "Curly") list

Data frame data.frame(x=1:3, y=c("NY", "CA", "IL")) list
Function print function

The mode function gives us this information:
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> mode(3.1415) # Mode of a number
[1] "numeric"

> mode(c(2.7182, 3.1415)) # Mode of a vector of numbers
[1] "numeric"
> mode("Moe") # Mode of a character string

[1] "character"
> mode(list("Moe","Larry","Curly")) # Mode of a list
[1] "list"

A critical difference between a vector and a list can be summed up this way:

¢ In a vector, all elements must have the same mode.

¢ In a list, the elements can have different modes.

Class: Abstract Type

In R, every object also has a class, which defines its abstract type. The terminology is
borrowed from object-oriented programming. A single number could represent many
different things: a distance, a point in time, a weight. All those objects have a mode of
“numeric” because they are stored as a number; but they could have different classes
to indicate their interpretation.

For example, a Date object consists of a single number:

> d <- as.Date("2010-03-15")

> mode(d)

[1] "numeric"

> length(d)

[1] 2
But it has a class of Date, telling us how to interpret that number; namely, as the number
of days since January 1, 1970:

> class(d)
[1] "Date"

R uses an object’s class to decide how to process the object. For example, the generic
function print has specialized versions (called methods) for printing objects according
to their class: data.frame, Date, 1Im, and so forth. When you print an object, R calls the
appropriate print function according to the object’s class.

Scalars

The quirky thing about scalars is their relationship to vectors. In some software, scalars
and vectors are two different things. In R, they are the same thing: a scalar is simply a
vector that contains exactly one element. In this book I often use the term “scalar”, but
that’s just shorthand for “vector with one element.”

Consider the built-in constant pi. It is a scalar:

> pi
[1] 3.141593
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Since a scalar is a one-element vector, you can use vector functions on pi:
> length(pi)
[1] 1

You can index it. The first (and only) element is 7, of course:

> pi[1]
[1] 3.141593

If you ask for the second element, there is none:

> pi[2]
[1] NA

Matrices

In R, a matrix is just a vector that has dimensions. It may seem strange at first, but you
can transform a vector into a matrix simply by giving it dimensions.

A vector has an attribute called dim, which is initially NULL, as shown here:
> A <- 1:6
> dim(A)
NULL
> print(A)
[1]123456

We give dimensions to the vector when we set its dim attribute. Watch what happens
when we set our vector dimensions to 2 x 3 and print it:
> dim(A) <- c(2,3)
> print(A)
(1] [,2] [,3]
(L] 1 3 5
[2,] 2 4 6

Voila! The vector was reshaped into a 2 x 3 matrix.
A matrix can be created from a list, too. Like a vector, a list has a dim attribute, which
is initially NULL:
> B <- list(1,2,3,4,5,6)
> dim(B)
NULL
If we set the dim attribute, it gives the list a shape:

> dim(B) <- c(2,3)
> print(B)

[>1] [,2] [,3]
2 4 6

Voila! We have turned this list into a 2 x 3 matrix.
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Arrays

The discussion of matrices can be generalized to 3-dimensional or even n-dimensional
structures: just assign more dimensions to the underlying vector (or list). The following
example creates a 3-dimensional array with dimensions 2 x 3 x 2:

> D <- 1:12

> dim(D) <- c(2,3,2)

> print(D)

[>1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12

Note that R prints one “slice” of the structure at a time, since it’s not possible to print
a 3-dimensional structure on a 2-dimensional medium.

Matrices Made from Lists

It strikes me as very odd that we can turn a list into a matrix just by giving the list a
dim attribute. But wait; it gets stranger.

Recall that a list can be heterogeneous (mixed modes). We can start with a heteroge-
neous list, give it dimensions, and thus create a heterogeneous matrix. This code snippet
creates a matrix that is a mix of numeric and character data:

> € <= list(1, 2, 3, "X", "Y', "Z")

> dim(C) <- c(2,3)

> print(C)

[,1] [,2] [,3]
AT
]2 ™ "7

To me this is strange because I ordinarily assume a matrix is purely numeric, not mixed.
R is not that restrictive.

The possibility of a heterogeneous matrix may seem powerful and strangely fascinating.
However, it creates problems when you are doing normal, day-to-day stuff with ma-
trices. For example, what happens when the matrix C (above) is used in matrix multi-
plication? What happens if it is converted to a data frame? The answer is that odd things
happen.

In this book, I generally ignore the pathological case of a heterogeneous matrix. I as-
sume you’ve got simple, vanilla matrices. Some recipes involving matrices may work
oddly (or not at all) if your matrix contains mixed data. Converting such a matrix to a
vector or data frame, for instance, can be problematic (Recipe 5.33).
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Factors

A factor looks like a vector, but it has special properties. R keeps track of the unique
values in a vector, and each unique value is called a level of the associated factor. R uses
a compact representation for factors, which makes them efficient for storage in data
frames. In other programming languages, a factor would be represented by a vector of
enumerated values.

There are two key uses for factors:

Categorical variables
A factor can represent a categorical variable. Categorical variables are used in con-
tingency tables, linear regression, analysis of variance (ANOVA), logistic regres-
sion, and many other areas.

Grouping
This is a technique for labeling or tagging your data items according to their group.
See the “Introduction” to Chapter 6.

Data Frames

A data frame is powerful and flexible structure. Most serious R applications involve
data frames. A data frame is intended to mimic a dataset, such as one you might en-
counter in SAS or SPSS.

A data frame is a tabular (rectangular) data structure, which means that it has rows and
columns. It is not implemented by a matrix, however. Rather, a data frame is a list:

¢ The elements of the list are vectors and/or factors.”

¢ Those vectors and factors are the columns of the data frame.

* The vectors and factors must all have the same length; in other words, all columns
must have the same height.

* The equal-height columns give a rectangular shape to the data frame.
* The columns must have names.

Because a data frame is both a list and a rectangular structure, R provides two different
paradigms for accessing its contents:

* You can use list operators to extract columns from a data frame, such as dfrm[i],
dfrm[[1]], or dfrm$name.

* You can use matrix-like notation, such as dfrm[i,j], dfrm[i,], or dfrm[,j].

Your perception of a data frame likely depends on your background:

* A data frame can be built from a mixture of vectors, factors, and matrices. The columns of the matrices
become columns in the data frame. The number of rows in each matrix must match the length of the vectors
and factors. In other words, all elements of a data frame must have the same height.
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To a statistician
A data frame is a table of observations. Each row contains one observation. Each
observation must contain the same variables. These variables are called columns,
and you can refer to them by name. You can also refer to the contents by row
number and column number, just as with a matrix.

To a SQL programmer
A data frame is a table. The table resides entirely in memory, but you can save it
to a flat file and restore it later. You needn’t declare the column types because R
figures that out for you.

To an Excel user
A data frame is like a worksheet, or perhaps a range within a worksheet. It is more
restrictive, however, in that each column has a type.

To an SAS user
A data frame is like a SAS dataset for which all the data resides in memory. R can
read and write the data frame to disk, but the data frame must be in memory while
R is processing it.

To an R programmer
A data frame is a hybrid data structure, part matrix and part list. A column can
contain numbers, character strings, or factors but not a mix of them. You can index
the data frame just like you index a matrix. The data frame is also a list, where the
list elements are the columns, so you can access columns by using list operators.

To a computer scientist
A data frame is a rectangular data structure. The columns are strongly typed, and
each column must be numeric values, character strings, or a factor. Columns must
have labels; rows may have labels. The table can be indexed by position, column
name, and/or row name. It can also be accessed by list operators, in which case R
treats the data frame as a list whose elements are the columns of the data frame.

To an executive
You can put names and numbers into a data frame. It's easy! A data frame is
like a little database. Your staff will enjoy using data frames.

5.1 Appending Data to a Vector

Problem

You want to append additional data items to a vector.

Solution

Use the vector constructor (c) to construct a vector with the additional data items:

> v <- c(v,newItems)
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For a single item, you can also assign the new item to the next vector element. R will
automatically extend the vector:

> v[length(v)+1] <- newItem

Discussion

If you ask me about appending a data item to a vector, I will suggest that maybe you
shouldn’t.

R works best when you think about entire vectors, not single data items.
Are you repeatedly appending items to a vector? If so, then you are
probably working inside a loop. That’s OK for small vectors, but for
large vectors your program will run slowly. The memory management
in R works poorly when you repeatedly extend a vector by one element.
Try to replace that loop with vector-level operations. You’ll write less
code, and R will run much faster.

&

Nonetheless, one does occasionally need to append data to vectors. My experiments
show that the most efficient way is to create a new vector using the vector constructor
(c) to join the old and new data. This works for appending single elements or multiple
elements:

> v <- ¢(1,2,3)

> v <- c(v,4) # Append a single value to v

> v

(111234

> w <- ¢(5,6,7,8)

> v <= c(v,w) # Append an entire vector to v

>V

[1]12345678

You can also append an item by assigning it to the position past the end of the vector,
as shown in the Solution. In fact, R is very liberal about extending vectors. You can
assign to any element and R will expand the vector to accommodate your request:

> v <- ¢(1,2,3) # Create a vector of three elements
> v[10] <- 10 # Assign to the 10th element
>V # R extends the vector automatically

[1] 1 2 3 NANA NA NA NA NA 10

Note that R did not complain about the out-of-bounds subscript. It just extended the
vector to the needed length, filling with NA.

R includes an append function that creates a new vector by appending items to an ex-
isting vector. However, my experiments show that this function runs more slowly than
both the vector constructor and the element assignment.
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5.2 Inserting Data into a Vector

Problem

You want to insert one or more data items into a vector.

Solution

Despite its name, the append function inserts data into a vector by using the after
parameter, which gives the insertion point for the new item or items:

> append(vec, newvalues, after=n)

Discussion
The new items will be inserted at the position given by after. This example inserts 99
into the middle of a sequence:

> append(1:10, 99, after=5)
[1] 2 2 3 4 59 6 7 8 910

The special value of after=0 means insert the new items at the head of the vector:

> append(1:10, 99, after=0)
[1199 2 2 3 4 5 6 7 8 910

The comments in Recipe 5.1 apply here, too. If you are inserting single items into a
vector, you might be working at the element level when working at the vector level
would be easier to code and faster to run.

5.3 Understanding the Recycling Rule

Problem

You want to understand the mysterious Recycling Rule that governs how R handles
vectors of unequal length.

Discussion

When you do vector arithmetic, R performs element-by-element operations. That
works well when both vectors have the same length: R pairs the elements of the vectors
and applies the operation to those pairs.

But what happens when the vectors have unequal lengths?

In that case, R invokes the Recycling Rule. It processes the vector element in pairs,
starting at the first elements of both vectors. At a certain point, the shorter vector is
exhausted while the longer vector still has unprocessed elements. R returns to the be-
ginning of the shorter vector, “recycling” its elements; continues taking elements from
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the longer vector; and completes the operation. It will recycle the shorter-vector ele-
ments as often as necessary until the operation is complete.

It’s useful to visualize the Recycling Rule. Here is a diagram of two vectors, 1:6 and 1:3:

16 13
1 1

2 2

3 3

4

5

6

Obviously, the 1:6 vector is longer than the 1:3 vector. If we try to add the vectors using
(1:6) + (1:3), it appears that 1:3 has too few elements. However, R recycles the elements
of 1:3, pairing the two vectors like this and producing a six-element vector:

1:6 13 (1:6)+(1:3)

1 1 2
2 2 4
3 3 6
4 1 5
5 2 7
6 3 9

Here is what you see at the command line:

> (1:6) + (1:3)

[11246579
It’s not only vector operations that invoke the Recycling Rule; functions can, too. The
cbind function can create column vectors, such as the following column vectors of 1:6
and 1:3. The two column have different heights, of course:

> cbind(1:6)
[»1]

1

— e —
oV h WN R
T e e v e e
[ P U
oouvi b WnN
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> cbind(1:3)
[»1]

If we try binding these column vectors together into a two-column matrix, the lengths
are mismatched. The 1:3 vector is too short, so cbind invokes the Recycling Rule and
recycles the elements of 1:3:
> cbind(1:6, 1:3)
(1] [,2]

1 1

ooV b WnN
W N R WN

If the longer vector’s length is not a multiple of the shorter vector’s length, R gives a
warning. That’s good, since the operation is highly suspect and there is likely a bug in
your logic:

> (1:6) + (1:5) # Oops! 1:5 is one element too short
[1] 2 4 6 810 7
Warning message:
In (1:6) + (2:5) :
longer object length is not a multiple of shorter object length

Once you understand the Recycling Rule, you will realize that operations between a
vector and a scalar are simply applications of that rule. In this example, the 10 is recycled
repeatedly until the vector addition is complete:

> (1:6) + 10
[1] 11 12 13 14 15 16

5.4 (reating a Factor (Categorical Variable)

Problem

You have a vector of character strings or integers. You want R to treat them as a factor,
which is R’s term for a categorical variable.

Solution

The factor function encodes your vector of discrete values into a factor:

> f <- factor(v) # v is a vector of strings or integers
If your vector contains only a subset of possible values and not the entire universe, then
include a second argument that gives the possible levels of the factor:

> f <- factor(v, levels)
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Discussion

In R, each possible value of a categorical variable is called a level. A vector of levels is
called a factor. Factors fit very cleanly into the vector orientation of R, and they are
used in powerful ways for processing data and building statistical models.

Most of the time, converting your categorical data into a factor is a simple matter of
calling the factor function, which identifies the distinct levels of the categorical data
and packs them into a factor:

> f <- factor(c("Win","Win","Lose","Tie","Win","Lose"))

> f

[1] Win Win Lose Tie Win Lose
Levels: Lose Tie Win

Notice that when we printed the factor, f, R did not put quotes around the values. They
are levels, not strings. Also notice that when we printed the factor, R also displayed the
distinct levels below the factor.

If your vector contains only a subset of all the possible levels, then R will have an
incomplete picture of the possible levels. Suppose you have a string-valued variable
wday that gives the day of the week on which your data was observed:

> f <- factor(wday)

> f

[1] Wed Thu Mon Wed Thu Thu Thu Tue Thu Tue
Levels: Mon Thu Tue Wed

R thinks that Monday, Thursday, Tuesday, and Wednesday are the only possible levels.
Friday is not listed. Apparently, the lab staff never made observations on Friday, so R
does not know that Friday is a possible value. Hence you need to list the possible levels
of wday explicitly:

> f <- factor(wday, c("Mon","Tue","Wed","Thu","Fri"))

> f

[1] Wed Thu Mon Wed Thu Thu Thu Tue Thu Tue
Levels: Mon Tue Wed Thu Fri

Now R understands that f is a factor with five possible levels. It knows their correct
order, too. It originally put Thursday before Tuesday because it assumes alphabetical
order by default.t The explicit second argument defines the correct order.

In many situations it is not necessary to call factor explicitly. When an R function
requires a factor, it usually converts your data to a factor automatically. The table
function, for instance, works only on factors, so it routinely converts its inputs to factors
without asking. You must explicitly create a factor variable when you want to specify
the full set of levels or when you want to control the ordering of levels.

t More precisely, it orders the names according to your Locale.
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See Also

See Recipe 12.6 to create a factor from continuous data.

5.5 Combining Multiple Vectors into One Vector and a Factor

Problem

You have several groups of data, with one vector for each group. You want to combine
the vectors into one large vector and simultaneously create a parallel factor that iden-
tifies each value’s original group.

Solution

Create a list that contains the vectors. Use the stack function to combine the list into
a two-column data frame:

> comb <- stack(list(vi=vi, v2=v2, v3=v3)) # Combine 3 vectors

The data frame’s columns are called values and ind. The first column contains the data,
and the second column contains the parallel factor.

Discussion

Why in the world would you want to mash all your data into one big vector and a
parallel factor? The reason is that many important statistical functions require the data
in that format.

Suppose you survey freshmen, sophomores, and juniors regarding their confidence
level (“What percentage of the time do you feel confident in school?”). Now you have
three vectors, called freshmen, sophomores, and juniors. You want to perform an
ANOVA analysis of the differences between the groups. The ANOVA function, aov,
requires one vector with the survey results as well as a parallel factor that identifies the
group. You can combine the groups using the stack function:

> comb <- stack(list(fresh=freshmen, soph=sophomores, jrs=juniors))
> print(comb)
values ind
0.60 fresh
.35 fresh
.44 fresh
.62 fresh
60 fresh
.70 soph
.61 soph
.63 soph
.87 soph
.85 soph
.70 soph
.64 soph

PR EROONOUVIAWN R
N R O
O OO O 00000 OoOOo
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13 0.76  jrs
14 0.71  jrs
15 0.92  jrs
16 0.87 jrs

Now you can perform the ANOVA analysis on the two columns:
> aov(values ~ ind, data=comb)
When building the list we must provide tags for the list elements (the tags are fresh,

soph, and jrs in this example). Those tags are required because stack uses them as the
levels of the parallel factor.

5.6 Creating a List

Problem

You want to create and populate a list.

Solution

To create a list from individual data items, use the 1ist function:
> Ist <- list(x, y, z)

Discussion

Lists can be quite simple, such as this list of three numbers:

> st <- list(0.5, 0.841, 0.977)
> Ist

[[1]]
[1] 0.5

[[2]]
[1] 0.841

[[3]]
[1] 0.977

When R prints the list, it identifies each list element by its position ([[1]], [[2]],
[[3]1]) and prints the element’s value (e.g., [1] 0.5) under its position.

More usefully, lists can—unlike vectors—contain elements of different modes (types).
Here is an extreme example of a mongrel created from a scalar, a character string, a
vector, and a function:

> 1st <- list(3.14, "Moe", c(1,1,2,3), mean)

> st

[[1]]
[1] 3.124

[[2]1]
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[1] "Moe"

3]]
l]1123

[l
[1
[[4]]

function (x, ...)
UseMethod("mean"
<environment: namespace:base>

You can also build a list by creating an empty list and populating it. Here is our “mon-
grel” example built in that way:

> 1st <- list()

> 1st[[1]] <- 3.14

> 1st[[2]] <- "Moe"

> 1st[[3]] <- (3,1,2,3)
> 1st[[4]] <- mean

List elements can be named. The 1list function lets you supply a name for every element:

> 1st <- list(mid=0.5, right=0.841, far.right=0.977)
> 1st

$mid

[1] 0.5

$right
[1] 0.841

$far.right
[1] 0.977

See Also

See the “Introduction” to this chapter for more about lists; see Recipe 5.9 for more
about building and using lists with named elements.

5.7 Selecting List Elements by Position

Problem

You want to access list elements by position.

Solution
Use one of these ways. Here, 1st is a list variable:
Ist[[n]]

Select the nth element from the list.

15t[c(n1) Nyy veey nk)]
Returns a list of elements, selected by their positions.
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Note that the first form returns a single element and the second returns a list.

Discussion

Suppose we have a list of four integers, called years:

> years <- list(1960, 1964, 1976, 1994)
> years

[[1]]
[1] 1960

[[2]]
[1] 1964

[[3]]
[1] 1976

[[4]]
[1] 1994
We can access single elements using the double-square-bracket syntax:
> years[[1]]
[1] 1960
We can extract sublists using the single-square-bracket syntax:

> years[c(1,2)]
[[1]]
[1] 1960

[[2]]

[1] 1964
This syntax can be confusing because of a subtlety: there is an important difference
between 1st[[n]] and 1st[n]. They are not the same thing:

1st[[n]]
This is an element, not a list. It is the nth element of 1st.

1st[n]
This is a list, not an element. The list contains one element, taken from the nth
element of 1st. This is a special case of 1st[c(ny, ny, ..., ng)]in which we elim-
inated the c(...) construct because there is only one n.

The difference becomes apparent when we inspect the structure of the result—one is
a number; the other is a list:
> class(years[[1]])

[1] "numeric"

> class(years[1])
[1] "list"

110 | Chapter5: Data Structures

www.it-ebooks.info


http://www.it-ebooks.info

The difference becomes annoyingly apparent when we cat the value. Recall that cat
can print atomic values or vectors but complains about printing structured objects:

> cat(years[[1]], "\n")

1960

> cat(years[1], "\n")

Error in cat(list(...), file, sep, fill, labels, append) :
argument 1 (type 'list') cannot be handled by 'cat'

We got lucky here because R alerted us to the problem. In other contexts, you might
work long and hard to figure out that you accessed a sublist when you wanted an
element, or vice versa.

5.8 Selecting List Elements by Name

Problem

You want to access list elements by their names.

Solution

Use one of these forms. Here, 1st is a list variable:
1st[["name"]]
Selects the element called name. Returns NULL if no element has that name.

1st$name
Same as previous, just different syntax.

1st[c(name,, name,, ..., namey)]
Returns a list built from the indicated elements of 1st.

Note that the first two forms return an element whereas the third form returns a list.

Discussion
Each element of a list can have a name. If named, the element can be selected by its
name. This assignment creates a list of four named integers:

> years <- list(Kennedy=1960, Johnson=1964, Carter=1976, Clinton=1994)
These next two expressions return the same value—namely, the element that is named
“Kennedy”:

> years[["Kennedy"]]
[1] 1960

> years$Kennedy

[1] 1960

The following two expressions return sublists extracted from years:

> years[c("Kennedy","Johnson")]
$Kennedy
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[1] 1960

$Johnson
[1] 1964

> years["Carter"]

$Carter

[1] 1976
Just as with selecting list elements by position (Recipe 5.7), there is an important dif-
ference between 1st[["name"]] and 1st["name"]. They are not the same:

1st[["name"]]
This is an element, not a list.

1st["name"
This is a list, not an element. This is a special case of 1st[c(name,, name,, ...,
namey)] in which we don’t need the c(...) construct because there is only one
name.

See Also

See Recipe 5.7 to access elements by position rather than by name.

5.9 Building a Name/Value Association List

Problem

You want to create a list that associates names and values—as would a dictionary, hash,
or lookup table in another programming language.

Solution
The list function lets you give names to elements, creating an association between
each name and its value:

> 1st <- list(mid=0.5, right=0.841, far.right=0.977)
If you have parallel vectors of names and values, you can create an empty list and then
populate the list by using a vectorized assignment statement:

> 1st <- list()

> 1st[names] <- values

Discussion

Each element of a list can be named, and you can retrieve list elements by name. This
gives you a basic programming tool: the ability to associate names with values.

You can assign element names when you build the list. The 1list function allows ar-
guments of the form name=value:
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> 1st <- list(

+ far.left=0.023,
+ left=0.159,

+ mid=0.500,

+ right=0.841,

+ far.right=0.977)
> Ist

$far.left

[1] 0.023

$left

[1] 0.159

$mid

[1] o.5

$right

[1] 0.841

$far.right

[1] 0.977

One way to name the elements is to create an empty list and then populate it via
assignment statements:

> Ist <- list()

> lst$far.left <- 0.023
> 1st$left <- 0.159

> 1st$mid <- 0.500

> lst$right <- 0.841

> lst$far.right <- 0.977

Sometimes you have a vector of names and a vector of corresponding values:

> values <- pnorm(-2:2)
> names <- c("far.left", "left", "mid", "right", "far.right")

You can associate the names and the values by creating an empty list and then popu-
lating it with a vectorized assignment statement:

> 1st <- list()

> 1lst[names] <- values
> 1st

$far.left

[1] 0.02275013

$left
[1] 0.1586553

$mid
[1] o.5

$right
[1] 0.8413447

$far.right
[1] 0.9772499
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Once the association is made, the list can “translate” names into values through a simple
list lookup:

> cat("The left limit is", 1st[["left"]], "\n")

The left limit is 0.1586553

> cat("The right limit is", lst[["right"]], "\n")

The right limit is 0.8413447

> for (nm in names(1lst)) cat("The", nm, "limit is", lst[[nm]], "\n")
The far.left limit is 0.02275013

The left limit is 0.1586553

The mid limit is 0.5

The right limit is 0.8413447

The far.right limit is 0.9772499

5.10 Removing an Element from a List

Problem

You want to remove an element from a list.

Solution

Assign NULL to the element. R will remove it from the list.

Discussion

To remove a list element, select it by position or by name, and then assign NULL to the
selected element:

> years
$Kennedy
[1] 1960

$Johnson
[1] 1964

$Carter
[1] 1976

$Clinton
[1] 1994

> years[["Johnson"]] <- NULL # Remove the element labeled "Johnson"
> years
$Kennedy
[1] 1960

$Carter
[1] 1976

$Clinton
[1] 1994
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You can remove multiple elements this way, too:

> years[c("Carter","Clinton")] <- NULL # Remove two elements
> years
$Kennedy
[1] 1960

5.11 Flatten a List into a Vector

Problem

You want to flatten all the elements of a list into a vector.

Solution

Use the unlist function.

Discussion

There are many contexts that require a vector. Basic statistical functions work on vec-
tors but not on lists, for example. If iq.scores is a list of numbers, then we cannot
directly compute their mean:

> mean(iq.scores)

[1] NA

Warning message:

In mean.default(iq.scores) :
argument is not numeric or logical: returning NA

Instead, we must flatten the list into a vector using unlist and then compute the mean
of the result:

> mean(unlist(iq.scores))
[1] 106.4452

Here is another example. We can cat scalars and vectors, but we cannot cat a list:

> cat(iq.scores, "\n")
Error in cat(list(...), file, sep, fill, labels, append) :
argument 1 (type 'list') cannot be handled by 'cat’

One solution is to flatten the list into a vector before printing:

> cat("IQ Scores:", unlist(iq.scores), "\n")
IQ Scores: 89.73383 116.5565 113.0454

See Also

Conversions such as this are discussed more fully in Recipe 5.33.
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5.12 Removing NULL Elements from a List

Problem

Your list contains NULL values. You want to remove them.

Solution

Suppose 1st is a list some of whose elements are NULL. This expression will remove the
NULL elements:

> Ist[sapply(1st, is.null)] <- NULL

Discussion

Finding and removing NULL elements from a list is surprisingly tricky. I wrote the fol-
lowing expression after trying several other ways, including the obvious ones, and fail-
ing. Here’s how it works:

1. R calls sapply to apply the is.null function to every element of the list.

2. sapply returns a vector of logical values that are TRUE wherever the corresponding
list element is NULL.

3. R selects values from the list according to that vector.

4. R assigns NULL to the selected items, removing them from the list.

The curious reader may be wondering how a list can contain NULL elements, given that
we remove elements by setting them to NULL (Recipe 5.10). The answer is that we can
create a list containing NULL elements:

> Ist <- list("Moe", NULL, "Curly") # Create list with NULL element
> Ist
[[1]]

[1] "Moe"

[[2]]
NULL

[[3]]
[1] "Curly"

> 1st[sapply(1lst, is.null)] <- NULL # Remove NULL element from list
> Ist
[[1]]

[1] "Moe"

[[2]]
[1] "Curly"
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See Also

See Recipe 5.10 for how to remove list elements.

5.13 Removing List Elements Using a Condition

Problem

You want to remove elements from a list according to a conditional test, such as re-
moving elements that are negative or smaller than some threshold.

Solution

Build a logical vector based on the condition. Use the vector to select list elements and
then assign NULL to those elements. This assignment, for example, removes all negative
value from 1st:

> Ist[1st < 0] <- NULL

Discussion

This recipe is based on two useful features of R. First, a list can be indexed by a logical
vector. Wherever the vector element is TRUE, the corresponding list element is selected.
Second, you can remove a list element by assigning NULL to it.

Suppose we want to remove elements from 1st whose value is zero. We construct a
logical vector which identifies the unwanted values (1st == 0). Then we select those
elements from the list and assign NULL to them:

> 1st[1st == 0] <- NULL

This expression will remove NA values from the list:

> 1st[is.na(1lst)] <- NULL
So far, so good. The problems arise when you cannot easily build the logical vector.
That often happens when you want to use a function that cannot handle a list. Suppose

you want to remove list elements whose absolute value is less than 1. The abs function
will not handle a list, unfortunately:

> 1st[abs(1st) < 1] <- NULL
Error in abs(lst) : non-numeric argument to function

The simplest solution is flattening the list into a vector by callingunlist and then testing
the vector:

> lst[abs(unlist(1st)) < 1] <- NULL

A more elegant solution uses lapply to apply the function to every element of the list:
> 1st[lapply(1st,abs) < 1] <- NULL
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Lists can hold complex objects, too, not just atomic values. Suppose that mods is a list
of linear models created by the 1m function. This expression will remove any model
whose R? value is less than 0.30:

> mods[sapply(mods, function(m) summary(m)$r.squared < 0.3)] <- NULL

See Also
See Recipes 5.7, 5.10, 5.11, 6.2, and 11.1.

5.14 Initializing a Matrix

Problem

You want to create a matrix and initialize it from given values.

Solution

Capture the data in a vector or list, and then use the matrix function to shape the data
into a matrix. This example shapes a vector into a 2 x 3 matrix (i.e., two rows and three
columns):

> matrix(vec, 2, 3)

Discussion

Suppose we want to create and initialize a 2 x 3 matrix. We can capture the initial data
inside a vector and then shape it using the matrix function:
> theData <- c(1.1, 1.2, 2.1, 2.2, 3.1, 3.2)

> mat <- matrix(theData, 2, 3)
> mat

The first argument of matrix is the data, the second argument is the number of rows,
and the third argument is the number of columns. Observe that the matrix was filled
column by column, not row by row.

It’s common to initialize an entire matrix to one value such as zero or NA. If the first
argument of matrix is a single value, then R will apply the Recycling Rule and auto-
matically replicate the value to fill the entire matrix:

> matrix(o, 2, 3) # Create an all-zeros matrix
[>1] [,2] [,3]

[1,] 0 0 0

[2,] 0 0 0

> matrix(NA, 2, 3) # Create a matrix populated with NA
[>1] [,2] [,3]
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[1,] NA NA NA
[2,] NA NA NA

You can create a matrix with a one-liner, of course, but it becomes difficult to read:
> mat <- matrix(c(1.1, 1.2, 1.3, 2.1, 2.2, 2.3), 2, 3)

A common idiom in R is typing the data itself in a rectangular shape that reveals the
matrix structure:
> theData <- c(1.1, 1.2, 1.3,

+ 2.1, 2.2, 2.3)
> mat <- matrix(theData, 2, 3, byrow=TRUE)

Setting byrow=TRUE tells matrix that the data is row-by-row and not column-by-column
(which is the default). In condensed form, that becomes:
> mat <- matrix(c(1.1, 1.2, 1.3,

+ 2.1, 2.2, 2.3),
+ 2, 3, byrow=TRUE)

Expressed this way, the reader quickly sees the two rows and three columns of data.

There is a quick-and-dirty way to turn a vector into a matrix: just assign dimensions to
the vector. This was discussed in the “Introduction”. The following example creates a
vanilla vector and then shapes it into a 2 x 3 matrix:

> v <- c(1.1, 1.2, 1.3, 2.1, 2.2, 2.3)
> dim(v) <- c(2,3)

>V

1] [,2
[1,] 1.
(2,] 2.
Personally, I find this more opaque than using matrix, especially since there is no
byrow option here.

1 [,3

)
2
2

[
NP
W
w N

See Also
See Recipe 5.3.

5.15 Performing Matrix Operations

Problem

You want to perform matrix operations such as transpose, matrix inversion, matrix
multiplication, or constructing an identity matrix.

Solution

t(A)
Matrix transposition of A
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solve(A)
Matrix inverse of A

A %*% B
Matrix multiplication of A and B
diag(n)
An n-by-n diagonal (identity) matrix
Discussion
Recall that A*B is element-wise multiplication whereas A %*% B is matrix multiplication.

All these functions return a matrix. Their arguments can be either matrices or data
frames. If they are data frames then R will first convert them to matrices (although this
is useful only if the data frame contains exclusively numeric values).

5.16 Giving Descriptive Names to the Rows and Columns of a
Matrix

Problem

You want to assign descriptive names to the rows or columns of a matrix.

Solution

Every matrix has a rownames attribute and a colnames attribute. Assign a vector of char-
acter strings to the appropriate attribute:

> rownames(mat) <- c("rowname,", "rowname,", ..., "rowname,")
> colnames(mat) <- c("colname,", "colname,", ..., "colname,")
Discussion

R lets you assign names to the rows and columns of a matrix, which is useful for printing
the matrix. R will display the names if they are defined, enhancing the readability of
your output. Consider this matrix of correlations between the prices of IBM, Microsoft,
and Google stock:

> print(tech.corr)
1] [,2] [,3]
[1,] 1.000 0.556 0.390
[2,] 0.556 1.000 0.444
[3,] 0.390 0.444 1.000

In this form, the matrix output’s interpretation is not self-evident. Yet if we define
names for the rows and columns, then R will annotate the matrix output with the
names:
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> colnames(tech.corr) <- c("IBM","MSFT","G0OOG")
> rownames(tech.corr) <- c("IBM","MSFT","G0OOG")
> print(tech.corr)

IBM MSFT GOOG
IBM 1.000 0.556 0.390
MSFT 0.556 1.000 0.444
GOOG 0.390 0.444 1.000

Now the reader knows at a glance which rows and columns apply to which stocks.

Another advantage of naming rows and columns is that you can refer to matrix elements
by those names:

> tech.corr["IBM","GO0OG" ] # What is the correlation between IBM and GOOG?
[1] 0.39

5.17 Selecting One Row or Column from a Matrix

Problem

You want to select a single row or a single column from a matrix.

Solution
The solution depends on what you want. If you want the result to be a simple vector,
just use normal indexing:

> vec <- mat[1,] # First row
> vec <- mat[,3] # Third column

If you want the result to be a one-row matrix or a one-column matrix, then include the
drop=FALSE argument:

> row <- mat[1,,drop=FALSE] # First row in a one-row matrix
> col <- mat[,3,drop=FALSE] # Third column in a one-column matrix
Discussion

Normally, when you select one row or column from a matrix, R strips off the dimen-
sions. The result is a dimensionless vector:

> mat[1,]

[1] 1 4 710

> mat[,3]

[1] 789

When you include the drop=FALSE argument, however, R retains the dimensions. In that
case, selecting a row returns a row vector (a 1 x n matrix):

> mat[1,,drop=FALSE]

[,1]1 [,2] [,3] [,4]
[1,] 1 4 7 10
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Likewise, selecting a column with drop=FALSE returns a column vector (an n x 1 matrix):
> mat[,3,drop=FALSE]

[,1]
(1,1 7
[2,] 8
3,1 9

5.18 Initializing a Data Frame from Column Data

Problem

Your data is organized by columns, and you want to assemble it into a data frame.

Solution

If your data is captured in several vectors and/or factors, use the data.frame function
to assemble them into a data frame:

> dfrm <- data.frame(vi, v2, v3, f1, f2)

If your data is captured in a list that contains vectors and/or factors, use instead
as.data.frame:

> dfrm <- as.data.frame(list.of.vectors)

Discussion

A data frame is a collection of columns, each of which corresponds to an observed
variable (in the statistical sense, not the programming sense). If your data is already
organized into columns, then it’s easy to build a data frame.

The data.frame function can construct a data frame from vectors, where each vector is
one observed variable. Suppose you have two numeric predictor variables, one cate-
gorical predictor variable, and one response variable. The data.frame function can cre-
ate a data frame from your vectors:

> dfrm <- data.frame(predi, pred2, pred3, resp)
> dfrm
pred1 pred2 pred3 resp
-2.7528917 -1.40784130 AM 12.57715
-0.3626909 0.31286963 AM 21.02418
-1.0416039 -0.69685664 PM 18.94694
1.2666820 -1.27511434 PM 18.98153
0.7806372 -0.27292745 AM 19.59455
.0832624 0.73383339 AM 20.71605
-2.0883305 0.96816822 PM 22.70062
-0.7063653 -0.84476203 PM 18.40691
-0.8394022 0.31530793 PM 21.00930
0 -0.4966884 -0.08030948 AM 19.31253

PO oO~N U D WN R
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Notice that data. frame takes the column names from your program variables. You can
override that default by supplying explicit column names:

> dfrm <- data.frame(pi=predi, p2=pred2, p3=pred3, r=resp)
> dfrm
p1 p2 p3 r
1 -2.7528917 -1.40784130 AM 12.57715
2 -0.3626909 0.31286963 AM 21.02418
3 -1.0416039 -0.69685664 PM 18.94694

: (etc.)

Alternatively, your data may be organized into vectors but those vectors are held in a
list, not individual program variables, like this:

> 1st <- list(pi=predi, p2=pred2, p3=pred3, r=resp)
No problem. Use the as.data.frame function to create a data frame from the list of
VeCtors:

> as.data.frame(1lst)

p1 p2 p3 r
1 -2.7528917 -1.40784130 AM 12.57715
2 -0.3626909 0.31286963 AM 21.02418
3 -1.0416039 -0.69685664 PM 18.94694

: (etc.)

5.19 Initializing a Data Frame from Row Data

Problem

Your data is organized by rows, and you want to assemble it into a data frame.

Solution

Store each row in a one-row data frame. Store the one-row data frames in a list. Use
rbind and do.call to bind the rows into one, large data frame:

> dfrm <- do.call(rbind, obs)

Here, obs is a list of one-row data frames.

Discussion

Data often arrives as a collection of observations. Each observation is a record or tuple
that contains several values, one for each observed variable. The lines of a flat file are
usually like that: each line is one record, each record contains several columns, and
each column is a different variable (see Recipe 4.12). Such data is organized by
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observation, not by variable. In other words, you are given rows one at a time rather
than columns one at a time.

Each such row might be stored in several ways. One obvious way is as a vector. If you
have purely numerical data, use a vector.

However, many datasets are a mixture of numeric, character, and categorical data, in
which case a vector won’t work. I recommend storing each such heterogeneous row in
a one-row data frame. (You could store each row in a list, but this recipe gets a little
more complicated.)

For concreteness, let’s assume that you have ten rows with four variables per observa-
tion: predi, pred2, pred2, and resp. Each row is stored in a one-row data frame, so you
have ten such data frames. Those data frames are stored in a list called obs. The first
element of obs might look like this:

> obs[[1]]
predl pred2 pred3 resp
1-1.197 0.36 AM 18.701

This recipe works also if your observations are stored in vectors rather than one-row
data frames.

We need to bind together those rows into a data frame. That’s what the rbind function
does. It binds its arguments in such a way that each argument becomes one row in the
result. If we rbind the first two observations, for example, we get a two-row data frame:

> rbind(obs[[1]], obs[[2]])

predl pred2 pred3 resp
1-1.197 0.36 AM 18.701
2 -0.952 1.23 PM 25.709

We want to bind together every observation, not just the first two, so we tap into the
vector processing of R. The do.call function will expand obs into one, long argument
list and call rbind with that long argument list:

> do.call(rbind,obs)
predl pred2 pred3 resp
-1.197 0.360 AM 18.701
-0.952 1.230 PM 25.709
0.279 0.423 PM 21.572
-1.445 -1.846 AM 14.392
0.822 -0.246 AM 19.841
1.247 1.254 PM 25.637
-0.394 1.563 AM 24.585
-1.248 -1.264 PM 16.770
-0.652 -2.344 PM 14.915

0 -1.171 -0.776 PM 17.948

PO O~NOUV A WN R

The result is a data frame built from our rows of data.

Sometimes, for reasons beyond your control, the rows of your data are stored in lists
rather than one-row data frames. You may be dealing with rows returned by a database
package, for example. In that case, obs will be a list of lists, not a list of data frames.
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We first transform the rows into data frames using the Map function and then apply this
recipe:

> dfrm <- do.call(rbind,Map(as.data.frame,obs))

See Also

See Recipe 5.18 if your data is organized by columns, not rows; see Recipe 12.18 to
learn more about do.call.

5.20 Appending Rows to a Data Frame

Problem

You want to append one or more new rows to a data frame.

Solution

Create a second, temporary data frame containing the new rows. Then use the rbind
function to append the temporary data frame to the original data frame.

Discussion

Suppose we want to append a new row to our data frame of Chicago-area cities. First,
we create a one-row data frame with the new data:

> newRow <- data.frame(city="West Dundee", county="Kane", state="IL", pop=5428)
Next, we use the rbind function to append that one-row data frame to our existing data
frame:

> suburbs <- rbind(suburbs, newRow)

> suburbs

city county state pop
1 Chicago Cook IL 2853114
2 Kenosha Kenosha WI 90352
3 Aurora Kane IL 171782
4 Elgin Kane  IL 94487
5 Gary Lake(IN) IN 102746
6 Joliet Kendall IL 106221
7 Naperville DuPage IL 147779
8 Arlington Heights Cook IL 76031
9 Bolingbrook Will IL 70834
10 Cicero Cook IL 72616
11 Evanston Cook IL 74239
12 Hammond Lake(IN) IN 83048
13 Palatine Cook IL 67232
14 Schaumburg Cook IL 75386
15 Skokie Cook IL 63348
16 Waukegan Lake(IL) IL 91452
17 West Dundee Kane IL 5428
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The rbind function tells R that we are appending a new row to suburbs, not a new
column. It may be obvious to you that newRow is a row and not a column, but it is not
obvious to R. (Use the cbind function to append a column.)

One word of caution. The new row must use the same column names as the data frame.
Otherwise, rbind will fail.

We can combine these two steps into one, of course:

> suburbs <- rbind(suburbs,
+ data.frame(city="West Dundee", county="Kane", state="IL", pop=5428))

We can even extend this technique to multiple new rows because rbind allows multiple
arguments:

> suburbs <- rbind(suburbs,
+ data.frame(city="West Dundee", county="Kane", state="IL", pop=5428),
+ data.frame(city="East Dundee", county="Kane", state="IL", pop=2955))

Do not use this recipe to append many rows to a large data frame. That
would force R to reallocate a large data structure repeatedly, which is a
very slow process. Build your data frame using more efficient means,
such as those in Recipes 5.19 or 5.21.

&

5.21 Preallocating a Data Frame

Problem

You are building a data frame, row by row. You want to preallocate the space instead
of appending rows incrementally.

Solution
Create a data frame from generic vectors and factors using the functions numeric(n),
character(n), and factor(n):

> dfrm <- data.frame(colnamei=numeric(n), colname2=character(n), ... etc. ... )

Here, n is the number of rows needed for the data frame.

Discussion

Theoretically, you can build a data frame by appending new rows, one by one. That’s
OK for small data frames, but building a large data frame in that way can be tortuous.
The memory manager in R works poorly when one new row is repeatedly appended to
a large data structure. Hence your R code will run very slowly.

One solution is to preallocate the data frame—assuming you know the required num-
ber of rows. By preallocating the data frame once and for all, you sidestep problems
with the memory manager.
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Suppose you want to create a data frame with 1,000,000 rows and three columns: two
numeric and one character. Use the numeric and character functions to preallocate the
columns; then join them together using data.frame:

> N <- 1000000
> dfrm <- data.frame(dosage=numeric(N), lab=character(N), response=numeric(N))

Now you have a data frame with the correct dimensions, 1,000,000 x 3, waiting to
receive its contents.

Data frames can contain factors, but preallocating a factor is a little trickier. You can’t
simply call factor(n). You need to specify the factor’s levels because you are creating
it. Continuing our example, suppose you want the lab column to be a factor, not a
character string, and that the possible levels are NJ, IL, and CA. Include the levels in the
column specification, like this:

> N <- 1000000

> dfrm <- data.frame(dosage=numeric(N),

+ lab=factor(N, levels=c("NJ", "IL", "CA")),
+ response=numeric(N) )

5.22 Selecting Data Frame Columns by Position

Problem

You want to select columns from a data frame according to their position.

Solution

To select a single column, use this list operator:

dfrm[[n]]
Returns one column—specifically, the nth column of dfrm.

To select one or more columns and package them in a data frame, use the following
sublist expressions:

dfrm[n]
Returns a data frame consisting solely of the nth column of dfrm.
dfrm[c(ny, nyy oouy )]
Returns a data frame built from the columns in positions #1, ny, ..., n, of dfrm.
You can use matrix-style subscripting to select one or more columns:
dfrm[, n]
Returns the nth column (assuming that n contains exactly one value).

dfrm[, c(ny, nyy <oy ng)l
Returns a data frame built from the columns in positions ny, n, ..., 1.
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Note that the matrix-style subscripting can return two different data types (either col-
umn or data frame) depending upon whether you select one column or multiple
columns.

Discussion

There are a bewildering number of ways to select columns from a data frame. The
choices can be confusing until you understand the logic behind the alternatives. As you
read this explanation, notice how a slight change in syntax—a comma here, a double-
bracket there—changes the meaning of the expression.

Let’s play with the population data for the 16 largest cities in the Chicago metropolitan
area:

> suburbs

city county state pop
1 Chicago Cook IL 2853114
2 Kenosha Kenosha WI 90352
3 Aurora Kane IL 171782
4 Elgin Kane IL 94487
5 Gary Lake(IN) IN 102746
6 Joliet Kendall IL 106221
7 Naperville DuPage IL 147779
8 Arlington Heights Cook IL 76031
9 Bolingbrook Will IL 70834
10 Cicero Cook IL 72616
11 Evanston Cook IL 74239
12 Hammond Lake(IN) IN 83048
13 Palatine Cook IL 67232
14 Schaumburg Cook IL 75386
15 Skokie Cook IL 63348
16 Waukegan Lake(IL) IL 91452

Use simple list notation to select exactly one column, such as the first column:
> suburbs[[1]]

[1] "Chicago" "Kenosha" "Aurora” "Elgin"

[5] "Gary" "Joliet" "Naperville" "Arlington Heights"
[9] "Bolingbrook" "Cicero" "Evanston" "Hammond"

[13] "Palatine" "Schaumburg" "Skokie" "Waukegan"

The first column of suburbs is a vector, so that’s what suburbs[[1]] returns: a vector.
If the first column were a factor, we’d get a factor.

The result differs when you use the single-bracket notation, as in suburbs[1]
or suburbs[c(1,3)]. You still get the requested columns, but R wraps them in a data
frame. This example returns the first column wrapped in a data frame:

> suburbs[1]

city
1 Chicago
2 Kenosha
3 Aurora
4 Elgin
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5 Gary
6 Joliet
7 Naperville
8 Arlington Heights
9 Bolingbrook
10 Cicero
11 Evanston
12 Hammond
13 Palatine
14 Schaumburg
15 Skokie
16 Waukegan

The next example returns the first and third columns wrapped in a data frame:

> suburbs[c(1,3)]
city pop

1 Chicago 2853114
2 Kenosha 90352
3 Aurora 171782
4 Elgin 94487
5 Gary 102746
6 Joliet 106221
7 Naperville 147779
8 Arlington Heights 76031
9 Bolingbrook 70834
10 Cicero 72616
11 Evanston 74239
12 Hammond 83048
13 Palatine 67232
14 Schaumburg 75386
15 Skokie 63348
16 Waukegan 91452

A major source of confusion is that suburbs[[1]] and suburbs[1] look similar but pro-
duce very different results:

suburbs[[1]]
This returns one column.

suburbs[1]
This returns a data frame, and the data frame contains exactly one column. This
is a special case of dfrm[c(ny,n,, ..., ng)]. We don’t need the c(...) construct
because there is only one n.

The point here is that “one column” is different from “a data frame that contains one
column.” The first expression returns a column, so it’s a vector or a factor. The second
expression returns a data frame, which is different.

R lets you use matrix notation to select columns, as shown in the Solution. But an odd
quirk can bite you: you might get a column or you might get a data frame, depending
upon many subscripts you use. In the simple case of one index you get a column, like
this:
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> suburbs[,1]

[1] "Chicago" "Kenosha" "Aurora" "Elgin"

[5] "Gary" "Joliet" "Naperville" "Arlington Heights"
[9] "Bolingbrook" "Cicero" "Evanston" "Hammond"

[13] "Palatine"” "Schaumburg" "Skokie" "Waukegan"

But using the same matrix-style syntax with multiple indexes returns a data frame:

> suburbs[,c(1,4)]
city pop

1 Chicago 2853114
2 Kenosha 90352
3 Aurora 171782
4 Elgin 94487
5 Gary 102746
6 Joliet 106221
7 Naperville 147779
8 Arlington Heights 76031
9 Bolingbrook 70834
10 Cicero 72616
11 Evanston 74239
12 Hammond 83048
13 Palatine 67232
14 Schaumburg 75386
15 Skokie 63348
16 Waukegan 91452

This creates a problem. Suppose you see this expression in some old R script:

dfrm[,vec]

Quick, does that return a column or a data frame? Well, it depends. If vec contains one
value then you get a column; otherwise, you get a data frame. You cannot tell from the
syntax alone.

To avoid this problem, you can include drop=FALSE in the subscripts; this forces R to
return a data frame:

dfrm[,vec,drop=FALSE]
Now there is no ambiguity about the returned data structure. It’s a data frame.

When all is said and done, using matrix notation to select columns from data frames
is not the best procedure. I recommend that you instead use the list operators described
previously. They just seem clearer.

See Also
See Recipe 5.17 for more about using drop=FALSE.
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5.23 Selecting Data Frame Columns by Name

Problem

You want to select columns from a data frame according to their name.

Solution

To select a single column, use one of these list expressions:
dfrm[ [ "name" 1]

Returns one column, the column called name.
dfrm$name

Same as previous, just different syntax.

To select one or more columns and package them in a data frame, use these list
expressions:

dfrm[ "name" ]

Selects one column and packages it inside a data frame object.
dfrm{c("name,", "name,", ..., "name")]

Selects several columns and packages them in a data frame.
You can use matrix-style subscripting to select one or more columns:
dfrm[, "name"]

Returns the named column.
dfrm[, c("name,", "name,", ..., "namey")]

Selects several columns and packages in a data frame.

Once again, the matrix-style subscripting can return two different data types (column
or data frame) depending upon whether you select one column or multiple columns.

Discussion

All columns in a data frame must have names. If you know the name, it’s usually more
convenient and readable to select by name, not by position.

The solutions just described are similar to those for Recipe 5.22, where we selected
columns by position. The only difference is that here we use column names instead of
column numbers. All the observations made in Recipe 5.22 apply here:

e dfrm[["name"]] returns one column, not a data frame.

e dfrm[c("name,", "name,", ..., "namey")] returns a data frame, not a column.

e dfrm["name"] is a special case of the previous expression and so returns a data frame,
not a column.
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* The matrix-style subscripting can return either a column or a data frame, so be
careful how many names you supply. See Recipe 5.22 for a discussion of this
“gotcha” and using drop=FALSE.

There is one new addition:
dfrm$name

This is identical in effect to dfrm[["name"]], but it’s easier to type and to read.

See Also

See Recipe 5.22 to understand these ways to select columns.

5.24 Selecting Rows and Columns More Easily

Problem

You want an easier way to select rows and columns from a data frame or matrix.

Solution
Use the subset function. The select argument is a column name, or a vector of column
names, to be selected:

> subset(dfrm, select=colname)
> subset(dfrm, select=c(colname,, ..., colnamey))

Note that you do not quote the column names.

The subset argument is a logical expression that selects rows. Inside the expression,
you can refer to the column names as part of the logical expression. In this example,
response is a column in the data frame, and we are selecting rows with a positive
response:

> subset(dfrm, subset=(response > 0))

subset is most useful when you combine the select and subset arguments:

> subset(dfrm, select=c(predictor,response), subset=(response > 0))

Discussion

Indexing is the “official” way to select rows and columns from a data frame, as described
in Recipes 5.22 and 5.23. However, indexing is cuambersome when the index expres-
sions become complicated.

The subset function provides a more convenient and readable way to select rows and
columns. It’s beauty is that you can refer to the columns of the data frame right inside
the expressions for selecting columns and rows.
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Here are some examples using the Cars93 dataset in the MASS package. Recall that the
dataset includes columns for Manufacturer, Model, MPG.city, MPG.highway, Min.Price,
and Max.Price:

Select the model name for cars that can exceed 30 miles per gallon (MPG) in the city

> subset(Cars93, select=Model, subset=(MPG.city > 30))
Model

31 Festiva

39 Metro

42 Civic

: (etc.)

Select the model name and price range for four-cylinder cars made in the United States

> subset(Cars93, select=c(Model,Min.Price,Max.Price),

+ subset=(Cylinders == 4 & Origin == "USA"))
Model Min.Price Max.Price

6 Century 14.2 17.3

12 Cavalier 8.5 18.3

13 Corsica 11.4 11.4

. (etc.)

Select the manufacturer’s name and the model name for all cars whose highway MPG
value is above the median

> subset(Cars93, select=c(Manufacturer,Model),

+ subset=c(MPG.highway > median(MPG.highway)))
Manufacturer Model

1 Acura Integra

5 BMW 5351

6 Buick Century

. (etc.)

The subset function is actually more powerful than this recipe implies. It can select
from lists and vectors, too. See the help page for details.

5.25 Changing the Names of Data Frame Columns

Problem

You converted a matrix or list into a data frame. R gave names to the columns, but the
names are at best uninformative and at worst bizarre.
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Solution

Data frames have a colnames attribute that is a vector of column names. You can update
individual names or the entire vector:

> colnames(dfrm) <- newnames # newnames is a vector of character strings

Discussion

The columns of data frames must have names. If you convert a vanilla matrix into a
data frame, R will synthesize names that are reasonable but boring—for example, V1,
V2, V3, and so forth:

> mat

L1l 2l [L3]
] -0.818 -0.667 -0.494
] -0.819 -0.946 -0.205
] 0.385 1.531 -0.611
] -2.155 -0.535 -0.316
s.data.frame(mat)

Vi V2 V3
0.818 -0.667 -0.494
-0.819 -0.946 -0.205
0.385 1.531 -0.611
2.155 -0.535 -0.316

If the matrix had column names defined, R would have used those names instead of
synthesizing new ones.

However, converting a list into a data frame produces some strange synthetic names:

> 1st

[[1]]
[1] -0.284 -1.114 -1.097 -0.873

[[2]]
[1] -1.673 0.929 0.306 0.778

[[3]]
[1] 0.323 0.368 0.067 -0.080

> as.data.frame(1lst)
c..0.284...1.114...1.097...0.873. ¢..1.673..0.929..0.306..0.778.

1 -0.284 -1.673

2 -1.114 0.929

3 -1.097 0.306

4 -0.873 0.778
€.0.323..0.368..0.067...0.08.

1 0.323

2 0.368

3 0.067

4 -0.080

Again, if the list elements had names then R would have used them.
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Fortunately, you can overwrite the synthetic names with names of your own by setting
the colnames attribute:

> dfrm <- as.data.frame(lst)

> colnames(dfrm) <- c("before","treatment","after")
> dfrm

before treatment after

-0.284 -1.673 0.323

-1.114 0.929 0.368

-1.097 0.306 0.067

-0.873 0.778 -0.080

B WN R

See Also
See Recipe 5.33.

5.26 Editing a Data Frame

Problem

Data in a data frame are incorrect or missing. You want a convenient way to edit the
data frame contents.

Solution

R includes a data editor that displays your data frame in a spreadsheet-like window.
Invoke the editor using the edit function:

> temp <- edit(dfrm)

> dfrm <- temp # Overwrite only if you're happy with the changes!
Make your changes and then close the editor window. The edit function will return the
updated data, which here are assigned to temp. If you are happy with the changes,
overwrite your data frame with the results.

If you are feeling brave, the fix function invokes the editor and overwrites your variable
with the result. There is no “undo”, however:

> fix(dfrm)

Discussion

Figure 5-1 is a screenshot of the data editor on Windows during the editing of data
from Recipe 5.22.

As of this writing, the editor is quite primitive. It does not include the common features
of a modern editor—not even an “undo” command, for instance. I cannot recommend
the data editor for regular use, but it’s OK for emergency touch-ups.
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File Windows Edit Help

D150 |
Vata Edito |
R version Z.10.
Copyright (C) 2 cicy county [state |[pop vars vars var?
ZEENE20E0 D 1 |Chicago Cook L 2853114
B is free softw 2 |Eenosha Fenosha |WI 20352
Tou are welocome 3 |Aurora Eane IL 171782
Type 'license() 4 |Elgin Eane IL 94457
5 |Gary Lake (IN) | IN 102748
Natural langu
& |Joliet Fendall |IL 108221
R is a collabor 7 |Haperville LuPage IL 147779
Type 'sontribut & |Arlington Heights|Cook IL 7e031
[ 5 '
eltation) ' enf™ o 50 ngbrook will L 70834
Type 'demo()' f 10 |Cicero Cook IL TZ6E16
'help.start ()" 11 |Evanston Cook IL 74239
Type 'g()' to o 12 | Hammond Lake (IN) | IN 83048
13 |Palatine Cook IL 67232
[Previously sawv
14 |Schawdurg Cook IL 75386
> edit (zuburbs) 15 |Skokie Cook IL 63348
16 |Uaukegan Lake (IL) |WI 1452
aET
18
19

Figure 5-1. Editing a data frame

Since there is no undo, take note of the solution that assigns the edited result to a
temporary, intermediate variable. If you mess up your data, you can just delete the
temporary variable without affecting the original data.

See Also

Several of the add-on GUI frontends provide data editors that are better than the native
editor.

5.27 Removing NAs from a Data Frame

Problem

Your data frame contains NA values, which is creating problems for you.

Solution

Use na.omit to remove rows that contain any NA values.

> clean <- na.omit(dfrm)
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Discussion

[ frequently stumble upon situations where just a few NA values in my data frame cause
everything to fall apart. One solution is simply to remove all rows that contain NAs.
That’s what na.omit does.

Here we can see cumsunm fail because the input contains NA values:

>

vuhs wN R

v W N R

dfrm
X y

-0.9714511 -0.4578746

NA 3.1663282
0.3367627 NA
1.7520504 0.7406335
0.4918786 1.4543427
cumsum(dfrm)

X y
-0.971451 -0.4578746

NA  2.7084536

NA NA

NA NA

NA NA

If we remove the NA values, cumsum can complete its summations:

> cumsum(na.omit(dfrm))

1
4
5

X
-0.9714511
0.7805993
1.2724779

y
-0.4578746
0.2827589
1.7371016

This recipe works for vectors and matrices, too, but not for lists.

Will You Still Have Enough Data?

The obvious danger here is that simply dropping observations from your data could
render the results computationally or statistically meaningless. Make sure that omitting
data makes sense in your context. Remember that na.omit will remove entire rows, not
just the NA values, which could eliminate a lot of useful information.

5.28 Excluding Columns by Name

Problem

You want to exclude a column from a data frame using its name.

Solution

Use the subset function with a negated argument for the select parameter:

> subset(dfrm, select = -badboy)

# All columns except badboy
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5.28 Excluding Columns by Name | 137


http://www.it-ebooks.info

Discussion

We can exclude a column by position (e.g., dfrm[-1]), but how do we exclude a column
by name? The subset function can exclude columns from a data frame. The select
parameter is a normally a list of columns to include, but prefixing a minus sign (-) to
the name causes the column to be excluded instead.

[ often encounter this problem when calculating the correlation matrix of a data frame
and [ want to exclude nondata columns such as labels:

> cor(patient.data)

patient.id pre dosage post
patient.id 1.00000000 0.02286906 0.3643084 -0.13798149
pre 0.02286906 1.00000000 0.2270821 -0.03269263
dosage 0.36430837 0.22708208 1.0000000 -0.42006280
post -0.13798149 -0.03269263 -0.4200628 1.00000000

This correlation matrix includes the meaningless “correlation” between patient ID and
other variables, which is annoying. We can exclude the patient ID column to clean up
the output:

> cor(subset(patient.data, select = -patient.id))
pre dosage post

pre 1.00000000 0.2270821 -0.03269264

dosage 0.22708207 1.0000000 -0.42006280

post -0.03269264 -0.4200628 1.00000000

We can exclude multiple columns by giving a vector of negated names:

> cor(subset(patient.data, select = c(-patient.id,-dosage)))
pre post

pre 1.00000000 -0.03269264

post -0.03269264 1.00000000

See Also

See Recipe 5.24 for more about the subset function.

5.29 Combining Two Data Frames

Problem

You want to combine the contents of two data frames into one data frame.

Solution

To combine the columns of two data frames side by side, use cbind:
> all.cols <- cbind(dfrm1,dfrm2)

To “stack” the rows of two data frames, use rbind:

> all.rows <- rbind(dfrmi,dfrm2)
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Discussion

You can combine data frames in one of two ways: either by putting the columns side
by side to create a wider data frame; or by “stacking” the rows to create a taller data
frame. The cbind function will combine data frames side by side, as shown here when
combining stooges and birth:

> stooges

name n.marry n.child
1 Moe 1 2
2 larry 1 2
3 Curly 4 2
> birth

birth.year birth.place

1 1887 Bensonhurst
2 1902 Philadelphia
3 1903 Brooklyn
> cbind(stooges,birth)
name n.marry n.child birth.year birth.place
Moe 1 2 1887 Bensonhurst
2 lLarry 1 2 1902 Philadelphia
3 Curly 4 2 1903 Brooklyn

You would normally combine columns with the same height (number of rows). Tech-
nically speaking, however, cbind does not require matching heights. If one data frame
is short, it will invoke the Recycling Rule to extend the short columns as necessary
(Recipe 5.3), which may or may not be what you want.

The rbind function will “stack” the rows of two data frames, as shown here when
combining stooges and guys:

> stooges

name n.marry n.child
1 Moe 1 2
2 Larry 1 2
3 Curly 4 2
> guys

name n.marry n.child
1 Tom 4 2
2 Dick 1 4
3 Harry 1 1
> rbind(stooges,guys)

name n.marry n.child
1 Moe 1
2 Larry 1 2
3 Curly 4 2
4 Tom 4 2
5 Dick 1 4
6 Harry 1 1

The rbind function requires that the data frames have the same width: same number
of columns and same column names. The columns need not be in the same order,
however; rbind will sort that out.
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Finally, this recipe is slightly more general than the title implies. First, you can combine
more than two data frames because both rbind and cbind accept multiple arguments.
Second, you can apply this recipe to other data types because rbind and cbind work
also with vectors, lists, and matrices.

See Also

The merge function can combine data frames that are otherwise incompatible owing to
missing or different columns. The reshape2 and plyr packages, available on CRAN,
include some powerful functions for slicing, dicing, and recombining data frames.

5.30 Merging Data Frames by Common Column

Problem

You have two data frames that share a common column. You want to merge their rows
into one data frame by matching on the common column.

Solution

Use the merge function to join the data frames into one new data frame based on the
common column:

> m <- merge(dfi, df2, by="name"

Here name is the name of the column that is common to data frames df1 and df2.

Discussion

Suppose you have two data frames, born and died, that each contain a column called
name:

> born

name year.born place.born
1 Moe 1887 Bensonhurst
2 larry 1902 Philadelphia
3 Curly 1903 Brooklyn
4 Harry 1964 Moscow
> died

name year.died
1 Curly 1952
2 Moe 1975
3 lLarry 1975

We can merge them into one data frame by using name to combine matched rows:

> merge(born, died, by="name"
name year.born place.born year.died

1 Curly 1903 Brooklyn 1952
2 larry 1902 Philadelphia 1975
3 Moe 1887 Bensonhurst 1975
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Notice that merge does not require the rows to be sorted or even to occur in the same
order. It found the matching rows for Curly even though they occur in different posi-
tions. It also discards rows that appear in only one data frame or the other.

In SQL terms, the merge function essentially performs a join operation on the two data
frames. It has many options for controlling that join operation, all of which are
described on the help page for merge.

See Also

See Recipe 5.29 for other ways to combine data frames.

5.31 Accessing Data Frame Contents More Easily

Problem

Your data is stored in a data frame. You are getting tired of repeatedly typing the data
frame name and want to access the columns more easily.

Solution

For quick, one-off expressions, use the with function to expose the column names:
> with(dataframe, expr)

Inside expr, you can refer to the columns of dataframe by their names—as if they were
simple variables.

For repetitive access, use the attach function to insert the data frame into your search
list. You can then refer to the data frame columns by name without mentioning the
data frame:

> attach(dataframe)

Use the detach function to remove the data frame from your search list.

Discussion

A data frame is a great way to store your data, but accessing individual columns can
become tedious. For a data frame called suburbs that contains a column called pop, here
is the naive way to calculate the z-scores of pop:

> z <- (suburbs$pop - mean(suburbs$pop)) / sd(suburbs$pop)
Call me a whiner, but all that typing gets tedious. The with function lets you expose
the columns of a data frame as distinct variables. It takes two arguments, a data frame

and an expression to be evaluated. Inside the expression, you can refer to the data frame
columns by their names:

> z <- with(suburbs, (pop - mean(pop)) / sd(pop))
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That is useful for one-liners. If you will be working repeatedly with columns in your
data frame, attach the data frame to your search list and the columns will become
available as variables:

> attach(suburbs)

After the attach, the second item in the search list is the suburbs data frame:

> search()

1] ".GlobalEnv" "suburbs” "package:stats”
4] "package:graphics" "package:grDevices" "package:utils"
7] "package:datasets" "package:methods"  "Autoloads"

0] "package:base"

non

Now we can refer to the columns of the data frame as if they were variables:
> z <- (pop - mean(pop)) / sd(pop)

When you are done, use a detach (with no arguments) to remove the second location
in the search list:

> detach()

> search()

[1] ".GlobalEnv" "package:stats" "package:graphics"
[4] "package:grDevices" "package:utils" "package:datasets"
[7] "package:methods"  "Autoloads" "package:base"

Observe that suburbs is no longer in the search list.

Attaching a data frame has a big quirk: R attaches a temporary copy of the data frame,
which means that changes to the original data frame are hidden. In this session frag-
ment, notice how changing the data frame does not change our view of the attached
data:

> attach(suburbs)
> pop
[1] 2853114 90352 171782 94487 102746 106221 147779 76031 70834
[10] 72616 74239 83048 67232 75386 63348 91452
> suburbs$pop <- 0 # Overwrite data frame contents
> pop # Hey! It seems nothing changed
[1] 2853114 90352 171782 94487 102746 106221 147779 76031 70834
[10] 72616 74239 83048 67232 75386 63348 91452
> suburbs$pop # Contents of data frame did indeed change
[1]0000000000000000

Another source of confusion is that assigning values to the exposed names does not
work as you might expect. In the following fragment, you might think we are scaling
pop by 1,000 but we are actually creating a new local variable:

> attach(suburbs)
> pop

[1] 2853114 90352 171782 94487 102746 106221 147779 76031 70834
[10] 72616 74239 83048 67232 75386 63348 91452

> pop <- pop / 1000 # Achtung! This is creating a local variable called "pop"
> 1s() # We can see the new variable in our workspace
[1] "pop" "suburbs"
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> suburbs$pop # Original data is unchanged
[1] 2853114 90352 171782 94487 102746 106221 147779 76031 70834
[10] 72616 74239 83048 67232 75386 63348 91452

5.32 Converting One Atomic Value into Another

Problem

You have a data value which has an atomic data type: character, complex, double,
integer, or logical. You want to convert this value into one of the other atomic data

types.

Solution

For each atomic data type, there is a function for converting values to that type. The
conversion functions for atomic types include:

* as.character(x)

* as.complex(x)

* as.numeric(x) or as.double(x)
* as.integer(x)

* as.logical(x)

Discussion

Converting one atomic type into another is usually pretty simple. If the conversion
works, you get what you would expect. If it does not work, you get NA:

> as.numeric(" 3.14 ")

[1] 3.14

> as.integer(3.14)

[1] 3

> as.numeric("foo")

[1] NA

Warning message:

NAs introduced by coercion
> as.character(101)

[1] "101"

If you have a vector of atomic types, these functions apply themselves to every value.
So the preceding examples of converting scalars generalize easily to converting entire
vectors:

> as.numeric(c("1","2.718","7.389","20.086"))

[1] 1.000 2.718 7.389 20.086

> as.numeric(c("1","2.718","7.389","20.086", "etc."))
[1] 1.000 2.718 7.389 20.086 NA

Warning message:

NAs introduced by coercion
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> as.character(101:105)
[1] l|101ll ll102ll ll103ll ll104ll ll105II

When converting logical values into numeric values, R converts FALSE to 0 and
TRUE to 1:

> as.numeric(FALSE)
[1] o
> as.numeric(TRUE)
[1] 1

This behavior is useful when you are counting occurrences of TRUE in vectors of logical
values. If logvec is a vector of logical values, then sum(logvec) does an implicit conver-
sion from logical to integer and returns the number of TRUEs.

5.33 Converting One Structured Data Type into Another

Problem

You want to convert a variable from one structured data type to another—for example,
converting a vector into a list or a matrix into a data frame.

Solution

These functions convert their argument into the corresponding structured data type:
* as.data.frame(x)
* as.list(x)
e as.matrix(x)

* as.vector(x)

Some of these conversions may surprise you, however. I suggest you review Table 5-1.

Discussion

Converting between structured data types can be tricky. Some conversions behave as
you’d expect. If you convert a matrix into a data frame, for instance, the rows and
columns of the matrix become the rows and columns of the data frame. No sweat.

Table 5-1. Data conversions

Conversion How Notes

Vector—List as.list(vec) Don‘tuse list(vec);that
creates a 1-element list whose
only element s a copy of vec.

Vector—Matrix To create a T-column matrix: cbind(vec) oras.matrix(vec)  SeeRecipe 5.14.

To create a 1-row matrix: rbind(vec)
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Conversion How Notes

To create an n X m matrix: matrix(vec,n,m)

Vector—Dataframe  To create a 1-column data frame: as . data. frame(vec)

To create a 1-row data frame: as . data. frame(rbind(vec))

List—Vector unlist(1st) Use unlist rather than
as.vector; see Note 1and
Recipe 5.11.
List—Matrix To create a T-column matrix: as.matrix(1st)
To create a 1-row matrix: as .matrix(rbind(1st))
To create an n X m matrix: matrix(1st,n,m)
List—Data frame If the list elements are columns of data: as . data. frame(1st)
If the list elements are rows of data: Recipe 5.19
Matrix—Vector as.vector(mat) Returns all matrix elements in
a vector.
Matrix—List as.list(mat) Returns all matrix elements in
a list.
Matrix—Dataframe  as.data.frame(mat)
Data frame—Vector  To convert a 1-row data frame: dfrm[1, ] See Note 2.
To convert a 1-column data frame: dfrm[ ,1] ordfrm[[1]]
Data frame—List as.list(dfrm) See Note 3.
Dataframe—Matrix ~ as.matrix(dfrm) See Note 4.

In other cases, the results might surprise you. Table 5-1 summarizes some noteworthy
examples. The following Notes are cited in that table:

1. When you convert a list into a vector, the conversion works cleanly if your list

contains atomic values that are all of the same mode. Things become complicated
if either (a) your list contains mixed modes (e.g., numeric and character), in which
case everything is converted to characters; or (b) your list contains other structured
data types, such as sublists or data frames—in which case very odd things happen,
so don’t do that.

. Converting a data frame into a vector makes sense only if the data frame contains
one row or one column. To extract all its elements into one, long vector, use
as.vector(as.matrix(dfrm)). But even that makes sense only if the data frame is
all-numeric or all-character; if not, everything is first converted to character strings.

. Converting a data frame into a list may seem odd in that a data frame is already a
list (i.e., a list of columns). Using as.list essentially removes the class
(data.frame) and thereby exposes the underlying list. That is useful when you want
R to treat your data structure as a list—say, for printing.
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4. Be careful when converting a data frame into a matrix. If the data frame contains
only numeric values then you get a numeric matrix. If it contains only character
values, you get a character matrix. But if the data frame is a mix of numbers, char-
acters, and/or factors, then all values are first converted to characters. The result
is a matrix of character strings.

Problems with matrices

The matrix conversions detailed here assume that your matrix is homogeneous: all
elements have the same mode (e.g, all numeric or all character). A matrix can to be
heterogeneous, too, when the matrix is built from a list. If so, conversions become
messy. For example, when you convert a mixed-mode matrix to a data frame, the data
frame’s columns are actually lists (to accommodate the mixed data).

See Also

See Recipe 5.32 for converting atomic data types; see the “Introduction” to this chapter
for remarks on problematic conversions.
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CHAPTER 6
Data Transformations

Introduction

This chapter is all about the apply functions: apply, lapply, sapply, tapply, mapply; and
their cousins, by and split. These functions let you take data in great gulps and process
the whole gulp at once. Where traditional programming languages use loops, R uses
vectorized operations and the apply functions to crunch data in batches, greatly stream-
lining the calculations.

Defining Groups Via a Factor

An important idiom of R is using a factor to define a group. Suppose we have a vector
and a factor, both of the same length, that were created as follows:

> v <- c(40,2,83,28,58)
> _F (_ 'FaC‘tOI'(C("A","C","C","B","C"))

We can visualize the vector elements and factors levels side by side, like this:

Vector  Factor

40 A
2 C
83 A
28 B
58 C

The factor level identifies the group of each vector element: 40 and 83 are in group A;
28 is in group B; and 2 and 58 are in group C.

In this book, I refer to such factors as grouping factors. They effectively slice and dice
our data by putting them into groups. This is powerful because processing data in
groups occurs often in statistics when comparing group means, comparing group pro-
portions, performing ANOVA analysis, and so forth.
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This chapter has recipes that use grouping factors to split vector elements into their
respective groups (Recipe 6.1), apply a function to groups within a vector (Rec-
ipe 6.5), and apply a function to groups of rows within a data frame (Recipe 6.6). In
other chapters, the same idiom is used to test group means (Recipe 9.19), perform one-
way ANOVA analysis (Recipe 11.20), and plot data points by groups (Recipe 10.4),
among other uses.

6.1 Splitting a Vector into Groups

Problem

You have a vector. Each element belongs to a different group, and the groups are iden-
tified by a grouping factor. You want to split the elements into the groups.

Solution

Suppose the vector is x and the factor is f. You can use the split function:
> groups <- split(x, f)
Alternatively, you can use the unstack function:

> groups <- unstack(data.frame(x,f))

Both functions return a list of vectors, where each vector contains the elements for one
group.

The unstack function goes one step further: if all vectors have the same length, it
converts the list into a data frame.

Discussion

The Cars93 dataset contains a factor called Origin that has two levels, USA and non-
USA. It also contains a column called MPG.city. We can split the MPG data according
to origin as follows:

> library(MASS)

> split(Cars93$MPG.city, Cars93$0rigin)

$USA

[1] 22 19 16 19 16 16 25 25 19 21 18 15 17 17 20 23 20 29 23 22 17 21 18 29 20
[26] 31 23 22 22 24 15 21 18 17 18 23 19 24 23 18 19 23 31 23 19 19 19 28

$non-USA
[1] 25 18 20 19 22 46 30 24 42 24 29 22 26 20 17 18 18 29 28 26 18 17 20 19 29
[26] 18 29 24 17 21 20 33 25 23 39 32 25 22 18 25 17 21 18 21 20

The usefulness of splitting is that we can analyze the data by group. This example
computes the median MPG for each group:
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> g <- split(Cars93$MPG.city, Cars93$0rigin)

> median(g[[1]])
[1] 20

> median(g[[2]])
[1] 22

See Also

See the “Introduction” to this chapter for more about grouping factors. Recipe 6.5
shows another way to apply functions, such as median, to each group. The unstack
function can perform other, more powerful transformations beside this; see the help

page.

6.2 Applying a Function to Each List Element

Problem

You have a list, and you want to apply a function to each element of the list.

Solution

Use either the lapply function or the sapply function, depending upon the desired form
of the result. lapply always returns the results in list, whereas sapply returns the results
in a vector if that is possible:

> 1st <- lapply(Ist, fun)
> vec <- sapply(Ist, fun)

Discussion

These functions will call your function (fun, in the solution example) once for every
element on your list. Your function should expect one argument, an element from the
list. The lapply and sapply functions will collect the returned values. lapply collects
them into a list and returns the list.

The “s” in “sapply” stands for “simplify.” The function tries to simplify the results into
a vector or matrix. For that to happen, all the returned values must have the same
length. If that length is 1 then you get a vector; otherwise, you get a matrix. If the lengths
vary, simplification is impossible and you get a list.

Let’s say I teach an introductory statistics class four times and administer comparable
final exams each time. Here are the exam scores from the four semesters:

> scores

$51

[1] 89 85 85 86 88 89 86 82 96 85 93 91 98 87 94 77 87 98 85 89
[21] 95 85 93 93 97 71 97 93 75 68 98 95 79 94 98 95

$S2
[1] 60 98 94 95 99 97 100 73 93 91 98 86 66 83 77
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[16] 97 91 93 71 91 95100 72 96 91 76 100 97 99 95
[31] 97 77 94 99 88 100 94 93 86

$S3
[1] 95 86 90 90 75 83 96 85 83 84 81 98 77 94 84 89 93 99 91 77
[21] 95 90 91 87 85 76 99 99 97 97 97 77 93 96 90 87 97 88

$S4
[1] 67 93 63 83 87 97 96 92 93 96 87 90 94 90 82 91 85 93 83 90
[21] 87 99 94 88 90 72 81 93 93 94 97 89 96 95 82 97

Each semester starts with 40 students but, alas, not everyone makes it to the finish line;
hence each semester has a different number of scores. We can count this number with
the length function: lapply will return a list of lengths, and sapply will return a vector
of lengths:

> lapply(scores, length)

$S1
[1] 36

$S2
[1] 39

$53
[1] 38

$54
[1] 36

> sapply(scores, length)
S1 52 S3 S4
36 39 38 36

We can see the mean and standard deviation of the scores just as easily:

> sapply(scores, mean)

S1 S2 S3 S4
88.77778 89.79487 89.23684 88.86111
> sapply(scores, sd)

S1 S2 S3 S4
7.720515 10.543592 7.178926 8.208542

If the called function returns a vector, sapply will form the results into a matrix. The
range function, for example, returns a two-element vector:
> sapply(scores, range)
S1 S2 S3 S4
[1,] 68 60 75 63
[2,] 98 100 99 99

If the called function returns a structured object, such as a list, then you will need to
use lapply rather than sapply. Structured objects cannot be put into a vector. Suppose
we want to perform a ¢ test on every semester. The t.test function returns a list, so we
must use lapply:

> tests <- lapply(scores, t.test)
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Now the result tests is a list: it is a list of t.test results. We can use sapply to extract
elements from the t.test results, such as the bounds of the confidence interval:

> sapply(tests, function(t) t$conf.int)

s1 52 s3 sS4
[1,] 86.16553 86.37703 86.87719 86.08374
[2,] 91.39002 93.21271 91.59650 91.63848

See Also
See Recipe 2.12.

6.3 Applying a Function to Every Row

Problem

You have a matrix. You want to apply a function to every row, calculating the function
result for each row.

Solution

Use the apply function. Set the second argument to 1 to indicate row-by-row application
of a function:

> results <- apply(mat, 1, fun) # mat is a matrix, fun is a function

The apply function will call fun once for each row, assemble the returned values into a
vector, and then return that vector.

Discussion

Suppose your matrix long is longitudinal data. Each row contains data for one subject,
and the columns contain the repeated observations over time:
> long
trial1 trial2 trial3 trial4 trials
Moe  -1.8501520 -1.406571 -1.0104817 -3.7170704 -0.2804896

Larry 0.9496313 1.346517 -0.1580926 1.6272786 2.4483321
Curly -0.5407272 -1.708678 -0.3480616 -0.2757667 -1.2177024

You could calculate the average observation for each subject by applying the mean func-
tion to the rows. The result is a vector:
> apply(long, 1, mean)

Moe Larry Curly
-1.6529530 1.2427334 -0.8181872

Note that apply uses the rownames from your matrix to identify the elements of the
resulting vector, which is handy.
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The function being called (fun, described previously) should expect one argument, a
vector, which will be one row from the matrix. The function can return a scalar or a
vector. In the vector case, apply assembles the results into a matrix. The range function
returns a vector of two elements, the minimum and the maximum, so applying it to
long produces a matrix:
> apply(long, 1, range)
Moe Larry Curly

[1,] -3.7170704 -0.1580926 -1.7086779
[2,] -0.2804896 2.4483321 -0.2757667

You can employ this recipe on data frames as well. It works if the data frame is
homogeneous—either all numbers or all character strings. When the data frame has
columns of different types, extracting vectors from the rows isn’t sensible because vec-
tors must be homogeneous.

6.4 Applying a Function to Every Column

Problem

You have a matrix or data frame, and you want to apply a function to every column.

Solution
For a matrix, use the apply function. Set the second argument to 2, which indicates
column-by-column application of the function:
> results <- apply(mat, 2, fun)
For a data frame, use the lapply or sapply functions. Either one will apply a function

to successive columns of your data frame. Their difference is that lapply assembles the
return values into a list whereas sapply assembles them into a vector:

> 1st <- lapply(dfrm, fun)
> vec <- sapply(dfrm, fun)

You can use apply on data frames, too, but only if the data frame is homogeneous (i.e.,
either all numeric values or all character strings).

Discussion

The apply function is intended for processing a matrix. In Recipe 6.3 we used apply to
process the rows of a matrix. This is the same situation, but now we are processing the
columns. The second argument of apply determines the direction:

* 1 means process row by row.

* 2 means process column by column.

This is more mnemonic than it looks. We speak of matrices in “rows and columns”,
so rows are first and columns second; 1 and 2, respectively.
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A data frame is a more complicated data structure than a matrix, so there are more
options. You can simply use apply, in which case R will convert your data frame to a
matrix and then apply your function. That will work if your data frame contains only
numeric data or character data. It probably will not work if you have mixed data types.
In that case, R will force all columns to have identical types, likely performing an un-
wanted conversion as a result.

Fortunately, there is an alternative. Recall that a data frame is a kind of list: it is a list
of the columns of the data frame. You can use lapply and sapply to process the columns,
as described in Recipe 6.2:

> 1st <- lapply(dfrm, fun) # Returns a list

> vec <- sapply(dfrm, fun) # Returns a vector
The function fun should expect one argument: a column from the data frame.
[ often use this recipe to check the types of columns in data frames. The batch column
of this data frame seems to contain numbers:

> head(batches)
batch clinic dosage shrinkage

1 1 IL 3 -0.11810714
2 3 IL 4 -0.29932107
3 2 IL 4 -0.27651716
4 1 IL 5 -0.18925825
5 2 IL 2 -0.06804804
6 3 NJ 5 -0.38279193

But printing the classes of the columns reveals it to be a factor instead:

> sapply(batches, class)
batch clinic dosage shrinkage
"factor" “"factor " "numeric"

nons

integer

A cool example of this recipe is removing low-correlation variables from a set of pre-
dictors. Suppose that resp is a response variable and pred is a data frame of predictor
variables. Suppose further that we have too many predictors and therefore want to
select the top 10 as measured by correlation with the response.

The first step is to calculate the correlation between each variable and resp. In R, that’s
a one-liner:

> cors <- sapply(pred, cor, y=resp)

The sapply function will call the function cor for every column in pred. Note that we
gave a third argument, y=resp, to sapply. Any arguments beyond the second one are
passed to cor. Every time that sapply calls cor, the first argument will be a column and
the second argument will be y=resp. With those arguments, the function call will be
cor(column,y=resp), which calculates the correlation between the given column and
resp.
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The result from sapply is a vector of correlations, one for each column. We use the
rank function to find the positions of the correlations that have the largest magnitude:

> mask <- (rank(-abs(cors)) <= 10)
This expression is a comparison (<=), so it returns a vector of logical values. It is cleverly
constructed so that the top 10 correlations have corresponding TRUE values and all

others are FALSE. Using that vector of logical values, we can select just those columns
from the data frame:

> best.pred <- pred[,mask]

At this point, we can regress resp against best.pred, knowing that we have chosen the
predictors with the highest correlations:

> Im(resp ~ best.pred)

That’s pretty good for four lines of code.

See Also
See Recipes 5.22, 6.2, and 6.3.

6.5 Applying a Function to Groups of Data

Problem

Your data elements occur in groups. You want to process the data by groups—for
example, summing by group or averaging by group.

Solution

Create a grouping factor (of the same length as your vector) that identifies the group
of each corresponding datum. Then use the tapply function, which will apply a function
to each group of data:

> tapply(x, f, fun)
Here, x is a vector, f is a grouping factor, and fun is a function. The function should

expect one argument, which is a vector of elements taken from x according to their
group.

Discussion

Suppose I have a vector with the populations of the 16 largest cities in the greater
Chicago metropolitan area, taken from the data frame called suburbs:

> attach(suburbs)

> pop

[1] 2853114 90352 171782 94487 102746 106221 147779 76031 70834
[10] 72616 74239 83048 67232 75386 63348 91452
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We can easily compute sums and averages for all the cities:

> sum(pop)
[1] 4240667
> mean(pop)
[1] 265041.7

What if we want the sum and average broken out by county? We will need a factor, say
county, the same length as pop, where each level of the factor gives the corresponding
county (there are two Lake counties: one in Illinois and one in Indiana) :
> county
[1] Cook Kenosha Kane Kane Lake(IN) Kendall DuPage Cook

[9] will Cook Cook Lake(IN) Cook Cook Cook Lake(IL)
Levels: Cook DuPage Kane Kendall Kenosha Lake(IL) Lake(IN) Will

Now I can use the county factor and tapply function to process items in groups. The
tapply function has three main parameters: the vector of data, the factor that defines
the groups, and a function. It will extract each group, apply the function to each group,
and return a vector with the collected results. This example shows summing the pop-
ulations by county:

> tapply(pop,county,sum)

Cook  DuPage Kane Kendall Kenosha Lake(IL) Lake(IN) Will
3281966 147779 266269 106221 90352 91452 185794 70834

The next example computes average populations by county:

> tapply(pop,county,mean)
Cook  DuPage Kane Kendall Kenosha Lake(IL) Lake(IN) Will
468852.3 147779.0 133134.5 106221.0 90352.0 91452.0 92897.0 70834.0

The function given to tapply should expect a single argument: a vector containing all
the members of one group. A good example is the length function, which takes a vector
parameter and returns the vector’s length. Use it to count the number of data in each
group; in this case, the number of cities in each county:

> tapply(pop,county,length)

Cook  DuPage Kane Kendall Kenosha Lake(IL) Lake(IN) Will
7 1 2 1 1 1 2 1

In most cases you will use functions that return a scalar and tapply will collect the
returned scalars into a vector. Your function can return complex objects, too, in which
case tapply will return them in a list. See the tapply help page for details.

See Also

See this chapter’s “Introduction” for more about grouping factors.
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6.6 Applying a Function to Groups of Rows

Problem

You want to apply a function to groups of rows within a data frame.

Solution

Define a grouping factor—that is, a factor with one level (element) for every row in
your data frame—that identifies the data groups.

For each such group of rows, the by function puts the rows into a temporary data frame
and calls your function with that argument. The by function collects the returned values
into a list and returns the list:

> by(dfrm, fact, fun)

Here, dfrm is the data frame, fact is the grouping factor, and fun is a function. The
function should expect one argument, a data frame.

Discussion

The advantage of the by function is that it calls your function with a data frame, which
is useful if your function handles data frames in a special way. For instance, the print,
summary, and mean functions perform special processing for data frames.

Suppose you have a data frame from clinical trials, called trials, where the dosage was
randomized to study its effect:

> trials

sex pre dosel dose2 post
1 F 5.931640 2 1 3.162600
2 F 4.496187 1 2 3.293989
3 M 6.161944 1 1 4.446643
4 F 4.322465 2 1 3.334748
5 M 4.153510 1 1 4.429382
. (etc.)

The data includes a factor for the subject’s sex, so by can split the data according to sex
and call summary for the two groups. The result is two summaries, one for men and one
for women:

> by(trials, trials$sex, summary)
trials$sex: F

sex pre dosel dose2 post

F:7  Min. :4.156  Min. :1.000  Min. :1.000  Min. :2.886

M:0  1st Qu.:4.409 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:3.075
Median :4.895 Median :1.000 Median :2.000 Median :3.163
Mean :5.020 Mean :1.429  Mean :1.571 Mean :3.174
3rd Qu.:5.668 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:3.314
Max. :5.932 Max. :2.000 Max. :2.000 Max. :3.389

156 | Chapter6: Data Transformations

www.it-ebooks.info


http://www.it-ebooks.info

trials$sex: M
sex pre dosel dose2 post

F:0 Min. :3.998  Min. :1.000  Min. :1.000  Min. :3.738
M:9  1st Qu.:4.773 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:3.800
Median :5.110 Median :2.000 Median :1.000 Median :4.194
Mean :5.189  Mean :1.556  Mean :1.444  Mean 14.148
3rd Qu.:5.828 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:4.429
Max. :6.658  Max. :2.000 Max. :2.000 Max. 14.517

We can also build linear models of post as a function of the dosages, with one model
for men and one model for women:

> models <- by(trials, trials$sex, function(df) lm(post~pre+dosei+dose2, data=df))
Observe that the parameter to our function is a data frame, so we can use it as the

data argument of 1Im. The result is a two-element list of linear models. When we print
the list, we see a model for each sex:

> print(models)
trials$sex: F

Call:

Im(formula = post ~ pre + dosel + dose2, data = df)

Coefficients:

(Intercept) pre dose1 dose2
4.30804 -0.08161 -0.16225 -0.31354

trials$sex: M

Call:

Im(formula = post ~ pre + dosel + dose2, data = df)

Coefficients:

(Intercept) pre dosel dose2
5.29981 -0.02713 -0.36851 -0.30323

We have a list of models, so we can apply the confint function to each list element and
see the confidence intervals for each model’s coefficients:

> lapply(models, confint)
$F

2.5 % 97.5 %
(Intercept) 3.0841733 5.53191431
pre -0.2950747 0.13184560
dosel -0.4711773 0.14667409
dose2 -0.6044273 -0.02264593
$M

2.5 % 97.5 %
(Intercept) 4.8898433 5.70978218
pre -0.1070276 0.05277108
dosel -0.4905828 -0.24644057
dose2 -0.4460200 -0.16043211
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In this case, we see that pre is not significant for either model because its confidence
interval contains zero; in contrast, dosel and dose2 are significant for both models. The
key fact, however, is that the models have significantly different intercepts, alerting us
to a potentially different response for men and women.

See Also

See this chapter’s “Introduction” for more about grouping factors. See Recipe 6.2 for
more about lapply.

6.7 Applying a Function to Parallel Vectors or Lists

Problem

You have a function, say ¥, that takes multiple arguments. You want to apply the func-
tion element-wise to vectors and obtain a vector result. Unfortunately, the function is
not vectorized; that is, it works on scalars but not on vectors.

Solution

Use the mapply function. It will apply the function f to your arguments element-wise:
> mapply(f, vec,, vec,, ..., vecy)

There must be one vector for each argument expected by f. If the vector arguments are

of unequal length, the Recycling Rule is applied.

The mapply function also works with list arguments:

> mapply(f, list,, list,, ..., listy)

Discussion

The basic operators of R, such as x + y, are vectorized; this means that they compute
their result element-by-element and return a vector of results. Also, many R functions
are vectorized.

Not all functions are vectorized, however, and those that are not work only on scalars.
Using vector arguments produces errors at best and meaningless results at worst. In
such cases, the mapply function can effectively vectorize the function for you.

Consider the ged function from Recipe 2.12, which takes two arguments:

> ged <- function(a,b) {

+ if (b == 0) return(a)

+ else return(ged(b, a %% b))
+}
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If we apply ged to two vectors, the result is wrong answers and a pile of error messages:
> ged(c(1,2,3), <(9,6,3))

[1] 1

20

Warning messages:

1: In
the
2: In
the
3: In
the

if (b == 0) return(a) else return(gcd(b, a%¥b)) :
condition has length > 1 and only the first element will be used
if (b == 0) return(a) else return(gcd(b, a%¥b)) :
condition has length > 1 and only the first element will be used
if (b == 0) return(a) else return(gcd(b, a%¥b)) :
condition has length > 1 and only the first element will be used

The function is not vectorized, but we can use mapply to vectorize it. This gives the
element-wise GCDs between two vectors:

> mapply(ged, c(1,2,3), c(9,6,3))

[1] 1

23
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CHAPTER 7
Strings and Dates

Introduction

Strings? Dates? In a statistical programming package?

As soon as you read files or print reports, you need strings. When you work with real-
world problems, you need dates.

R has facilities for both strings and dates. They are clumsy compared to string-oriented
languages such as Perl, but then it’s a matter of the right tool for the job. I wouldn’t
want to perform logistic regression in Perl.

Classes for Dates and Times

R has a variety of classes for working with dates and times; which is nice if you prefer
having a choice but annoying if you prefer living simply. There is a critical distinction
among the classes: some are date-only classes, some are datetime classes. All classes
can handle calendar dates (e.g., March 15, 2010), but not all can represent a datetime
(11:45 AM on March 1, 2010).

The following classes are included in the base distribution of R:

Date
The Date class can represent a calendar date but not a clock time. It is a solid,
general-purpose class for working with dates, including conversions, formatting,
basic date arithmetic, and time-zone handling. Most of the date-related recipes in
this book are built on the Date class.

POSIXct
This is a datetime class, and it can represent a moment in time with an accuracy
of one second. Internally, the datetime is stored as the number of seconds since
January 1, 1970, and so is a very compact representation. This class is recommen-
ded for storing datetime information (e.g., in data frames).
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POSIX1t
This is also a datetime class, but the representation is stored in a nine-element list
that includes the year, month, day, hour, minute, and second. That representation
makes it easy to extract date parts, such as the month or hour. Obviously, this
representation is much less compact than the POSIXct class; hence it is normally
used for intermediate processing and not for storing data.

The base distribution also provides functions for easily converting between represen-
tations: as.Date, as.POSIXct, and as.POSIX1t.

The following packages are available for downloading from CRAN:

chron
The chron package can represent both dates and times but without the added
complexities of handling time zones and daylight savings time. It’s therefore easier
to use than Date but less powerful than POSIXct and POSIX1t. It would be useful for
work in econometrics or time series analysis.

lubridate
This is a relatively new, general-purpose package. It’s designed to make working
with dates and times easier while keeping the important bells and whistles such as
time zones. It’s especially clever regarding datetime arithmetic.

mondate
This is a specialized package for handling dates in units of months in addition to
days and years. Such needs arise in accounting and actuarial work, for example,
where month-by-month calculations are needed.

timeDate
This is a high-powered package with well-thought-out facilities for handling dates
and times, including date arithmetic, business days, holidays, conversions, and
generalized handling of time zones. It was originally part of the Rmetrics software
for financial modeling, where precision in dates and times is critical. If you have a
demanding need for date facilities, consider this package.

Which class should you select? The article “Date and Time Classes in R” by Grothen-
dieck and Petzoldt offers this general advice:
When considering which class to use, always choose the least complex class that will
support the application. That is, use Date if possible, otherwise use chron and otherwise

use the POSIX classes. Such a strategy will greatly reduce the potential for error and
increase the reliability of your application.

See Also

See help(DateTimeClasses) for more details regarding the built-in facilities. See the June
2004 article “Date and Time Classes in R” by Gabor Grothendieck and Thomas Pet-
zoldt for a great introduction to the date and time facilities. The June 2001 article
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“Date-Time Classes” by Brian Ripley and Kurt Hornik discusses the two POSIX classes
in particular.

7.1 Getting the Length of a String

Problem

You want to know the length of a string.

Solution

Use the nchar function, not the length function.

Discussion

The nchar function takes a string and returns the number of characters in the string:

> nchar("Moe")
[1] 3

> nchar("Curly")
[1] 5

If you apply nchar to a vector of strings, it returns the length of each string:

> s <- c("Moe", "Larry", "Curly")
> nchar(s)
11355

You might think the length function returns the length of a string. Nope—it returns
the length of a vector. When you apply the length function to a single string, R returns
the value 1 because it views that string as a singleton vector—a vector with one element:

> length("Moe")

(1] 1
> length(c("Moe", "Larry","Curly"))
(1] 3

7.2 Concatenating Strings

Problem

You want to join together two or more strings into one string.

Solution

Use the paste function.

7.2 Concatenating Strings | 163

www.it-ebooks.info


http://www.it-ebooks.info

Discussion

The paste function concatenates several strings together. In other words, it creates a
new string by joining the given strings end to end:

> paste("Everybody", "loves", "stats.")
[1] "Everybody loves stats."

By default, paste inserts a single space between pairs of strings, which is handy if that’s
what you want and annoying otherwise. The sep argument lets you specify a different
separator. Use an empty string (") to run the strings together without separation:

> paste("Everybody", "loves", "stats.", sep="-")

[1] "Everybody-loves-stats."

> paste("Everybody", "loves", "stats.", sep="")
[1] "Everybodylovesstats."

The function is very forgiving about nonstring arguments. It tries to convert them to
strings using the as.character function:

> paste("The square root of twice pi is approximately"”, sqrt(2*pi))
[1] "The square root of twice pi is approximately 2.506628274631"

If one or more arguments are vectors of strings, paste will generate all combinations of
the arguments:

> stooges <- c("Moe", "Larry", "Curly")
> paste(stooges, "loves", "stats.")
[1] "Moe loves stats." "Larry loves stats.

Curly loves stats.”

Sometimes you want to join even those combinations into one, big string. The
collapse parameter lets you define a top-level separator and instructs paste to concat-
enate the generated strings using that separator:

> paste(stooges, "loves", "stats", collapse=", and ")
[1] "Moe loves stats, and Larry loves stats, and Curly loves stats"

7.3 Extracting Substrings

Problem

You want to extract a portion of a string according to position.

Solution

Use substr(string,start,end) to extract the substring that begins at start and ends at
end.

Discussion

The substr function takes a string, a starting point, and an ending point. It returns the
substring between the starting to ending points:
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> substr("Statistics", 1, 4) # Extract first 4 characters

[1] "Stat"

> substr("Statistics", 7, 10) # Extract last 4 characters

[1] "tics"
Just like many R functions, substr lets the first argument be a vector of strings. In that
case, it applies itself to every string and returns a vector of substrings:

> ss <- c("Moe", "Larry", "Curly")
> substr(ss, 1, 3) # Extract first 3 characters of each string
[1] "Moe" "Lar" "Cur"

In fact, all the arguments can be vectors, in which case substr will treat them as parallel
vectors. From each string, it extracts the substring delimited by the corresponding en-
tries in the starting and ending points. This can facilitate some useful tricks. For ex-
ample, the following code snippet extracts the last two characters from each string;
each substring starts on the penultimate character of the original string and ends on
the final character:

> cities <- c("New York, NY", "Los Angeles, CA", "Peoria, IL")
> substr(cities, nchar(cities)-1, nchar(cities))
[1] "NY" "CA" "TL"

You can extend this trick into mind-numbing territory by exploiting the Recycling Rule,
but I suggest you avoid the temptation.

7.4 Splitting a String According to a Delimiter

Problem

You want to split a string into substrings. The substrings are separated by a delimiter.

Solution
Use strsplit, which takes two arguments—the string and the delimiter of the sub-
strings:

> strsplit(string, delimiter)

The delimiter can be either a simple string or a regular expression.

Discussion
Itis common for a string to contain multiple substrings separated by the same delimiter.
One example is a file path, whose components are separated by slashes (/):

> path <- "/home/mike/data/trials.csv"

We can split that path into its components by using strsplit with a delimiter of /:

> strsplit(path, "/")
[[1]]

[a] " "home" "mike" "data" "trials.csv"
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Notice that the first “component” is actually an empty string because nothing preceded
the first slash.

Also notice that strsplit returns a list and that each element of the list is a vector of
substrings. This two-level structure is necessary because the first argument can be a
vector of strings. Each string is split into its substrings (a vector); then those vectors are
returned in a list. This example splits three file paths and returns a three-element list:

> paths <- c("/home/mike/data/trials.csv",

+ "/home/mike/data/errors.csv",

+ "/home/mike/corr/reject.doc")

> strsplit(paths, "/")

[[1]]

[1] ™" "home" "mike" "data" "trials.csv"
[[2]]
[1] nn "home" "mike" "data" "errors.csv"
[[31]
[1] ™" "home" "mike" "corr" "reject.doc"

The second argument of strsplit (the delimiter argument) is actually much more
powerful than these examples indicate. It can be a regular expression, letting you match
patterns far more complicated than a simple string. In fact, to defeat the regular ex-
pression feature (and its interpretation of special characters) you must include the
fixed=TRUE argument.

See Also

To learn more about regular expressions in R, see the help page for regexp. See
O’Reilly’s Mastering Regular Expressions, by Jeffrey E.F. Friedl to learn more about
regular expressions in general.

7.5 Replacing Substrings

Problem

Within a string, you want to replace one substring with another.

Solution

Use sub to replace the first instance of a substring:

> sub(old, new, string)

Use gsub to replace all instances of a substring:

> gsub(old, new, string)
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Discussion
The sub function finds the first instance of the 01d substring within string and replaces
it with the new substring:

> s <- "Curly is the smart one. Curly is funny, too."
> sub("Curly", "Moe", s)
[1] "Moe is the smart one. Curly is funny, too."

gsub does the same thing, but it replaces all instances of the substring (a global replace),
not just the first:

> gsub("Curly", "Moe", s)
[1] "Moe is the smart one. Moe is funny, too."

To remove a substring altogether, simply set the new substring to be empty:

> sub(" and SAS", "", "For really tough problems, you need R and SAS.")
[1] "For really tough problems, you need R."

The old argument can be regular expression, which allows you to match patterns much
more complicated than a simple string. This is actually assumed by default, so you must
set the fixed=TRUE argument if you don’t want sub and gsub to interpret old as a regular
expression.

See Also

To learn more about regular expressions in R, see the help page for regexp. See Mas-
tering Regular Expressions to learn more about regular expressions in general.

7.6 Seeing the Special Characters in a String

Problem

Your string contains special characters that are unprintable. You want to know what
they are.

Solution

Use print to see the special characters in a string. The cat function will not reveal them.

Discussion

I once encountered a bizarre situation in which a string contained, unbeknownst to
me, unprintable characters. My R script used cat to display the string, and the script
output was garbled until I realized there were unprintable characters in the string.
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In this example, the string seems to contain 13 characters but cat shows only a
6-character output:

> nchar(s)

[1] 13

> cat(s)

second

The reason is that the string contains special characters, which are characters that do
not display when printed. When we use print, it uses escapes (backslashes) to show
the special characters:

> print(s)

[1] "first\rsecond\n"
Notice that the string contains a return character (\r) in the middle, so “first” is over-
written by “second” when cat displays the string.

7.7 Generating All Pairwise Combinations of Strings

Problem

You have two sets of strings, and you want to generate all combinations from those
two sets (their Cartesian product).

Solution

Use the outer and paste functions together to generate the matrix of all possible
combinations:

> m <- outer(stringsi, strings2, paste, sep="")

Discussion

The outer function is intended to form the outer product. However, it allows a third
argument to replace simple multiplication with any function. In this recipe we replace
multiplication with string concatenation (paste), and the result is all combinations of
strings.

Suppose you have four test sites and three treatments:

> locations <- c("NY", "LA", "CHI", "HOU")
> treatments <- c("T1", "T2", "T3")

We can apply outer and paste to generate all combinations of test sites and treatments:

n_u

> outer(locations, treatments, paste, sep="-")
[>1] [,2] [,3]

1 UNY-T2" "NY-T2"  “NY-T3"

] "LA-T1" "LA-T2" "LA-T3"

] "CHI-T1" "CHI-T2" "CHI-T3"

] "HOU-T1" "HOU-T2" "HOU-T3"
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The fourth argument of outer is passed to paste. In this case, we passed sep="-" in

order to define a hyphen as the separator between the strings.

The result of outer is a matrix. If you want the combinations in a vector instead, flatten
the matrix using the as.vector function.

In the special case when you are combining a set with itself and order does not matter,
the result will be duplicate combinations:

> outer(treatments, treatments, paste, sep="-")

1] [,21 [,3]
[1,] "T1-T1" "T1-T2" "T1-T3"
[2,] "T2-T1" "T2-T2" "T2-T3"
[3.] "T3-T1" "T3-T2" "T3-T3"

But suppose we want all unique pairwise combinations of treatments. We can eliminate
the duplicates by removing the lower triangle (or upper triangle). The lower.tri func-
tion identifies that triangle, so inverting it identifies all elements outside the lower
triangle:

> m <- outer(treatments, treatments, paste, sep="-")

> m[!lower.tri(m)]

[1] I|T1_T1" "Tl-TZ" "TZ-TZH "Tl-T3" "T2-T3" "T3-T3"

See Also

See Recipe 7.2 for using paste to generate combinations of strings.

7.8 Getting the Current Date

Problem

You need to know today’s date.

Solution

The Sys.Date function returns the current date:

> Sys.Date()
[1] "2010-02-11"

Discussion

The Sys.Date function returns a Date object. In the preceding example it seems to return
a string because the result is printed inside double quotes. What really happened,
however, is that Sys.Date returned a Date object and then R converted that object into
a string for printing purposes. You can see this by checking the class of the result from
Sys.Date:

> class(Sys.Date())
[1] "Date"
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See Also
See Recipe 7.10.

7.9 Converting a String into a Date

Problem

You have the string representation of a date, such as “2010-12-31”, and you want to
convert that into a Date object.

Solution

You can use as.Date, but you must know the format of the string. By default, as.Date
assumes the string looks like yyyy-mm-dd. To handle other formats, you must specify
the format parameter of as.Date. Use format="%m/%d/%Y" if the date is in American style,
for instance.

Discussion

This example shows the default format assumed by as.Date, which is the ISO 8601
standard format of yyyy-mm-dd:

> as.Date("2010-12-31")

[1] "2010-12-31"
The as.Date function returns a Date object that is here being converted back to a string
for printing; this explains the double quotes around the output.

The string can be in other formats, but you must provide a format argument so that
as.Date can interpret your string. See the help page for the stftime function for details
about allowed formats.

Being a simple American, I often mistakenly try to convert the usual American date
format (mm/dd/yyyy) into a Date object, with these unhappy results:

> as.Date("12/31/2010")
Error in charToDate(x) :
character string is not in a standard unambiguous format

Here is the correct way to convert an American-style date:
> as.Date("12/31/2010", format="%m/%d/%¥")
[1] "2010-12-31"

Observe that the Y in the format string is capitalized to indicate a 4-digit year. If you’re
using 2-digit years, specify a lowercase y.
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7.10 Converting a Date into a String

Problem

You want to convert a Date object into a character string, usually because you want to
print the date.

Solution

Use either format or as.character:

> format(Sys.Date())

[1] "2010-04-01"

> as.character(Sys.Date())
[1] "2010-04-01"

Both functions allow a format argument that controls the formatting. Use
format="%m/%d/%Y" to get American-style dates, for example:

> format(Sys.Date(), format="%m/%d/%¥")
[1] "o04/01/2010"

Discussion

The format argument defines the appearance of the resulting string. Normal characters,
such as slash (/) or hyphen (-) are simply copied to the output string. Each two-letter
combination of a percent sign (%) followed by another character has special meaning.
Some common ones are:

%b
Abbreviated month name (“Jan”)

%B
Full month name (“January”)

%d
Day as a two-digit number
Month as a two-digit number

Year without century (00-99)

Year with century

See the help page for the strftime function for a complete list of formatting codes.
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7.11 Converting Year, Month, and Day into a Date

Problem

You have a date represented by its year, month, and day. You want to merge these
elements into a single Date object representation.

Solution

Use the ISOdate function:
> ISOdate(year, month, day)

The result is a POSIXct object that you can convert into a Date object:
> as.Date(ISOdate(year, month, day))

Discussion

It is common for input data to contain dates encoded as three numbers: year, month,
and day. The IS0date function can combine them into a POSIXct object:

> ISOdate(2012,2,29)
[1] "2012-02-29 12:00:00 GMT"

You can keep your date in the POSIXct format. However, when working with pure dates
(not dates and times), I often convert to a Date object and truncate the unused time
information:

> as.Date(ISOdate(2012,2,29))
[1] "2012-02-29"

Trying to convert an invalid date results in NA:

> ISOdate(2013,2,29) # Oops! 2013 is not a leap year
[1] NA

ISOdate can process entire vectors of years, months, and days, which is quite handy for
mass conversion of input data. The following example starts with the year/month/day
numbers for the third Wednesday in January of several years and then combines them
all into Date objects:

> years

[1] 2010 2011 2012 2013 2014

> months

[1]11111

> days

[1] 15 21 20 18 17

> ISOdate(years, months, days)

[1] "2010-01-15 12:00:00 GMT" "2011-01-21 12:00:00 GMT"
[3] "2012-01-20 12:00:00 GMT" "2013-01-18 12:00:00 GMT"
[5] "2014-01-17 12:00:00 GMT"

> as.Date(ISOdate(years, months, days))

[1] "2010-01-15" "2011-01-21" "2012-01-20" "2013-01-18" "2014-01-17"
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Purists will note that the vector of months is redundant and that the last expression
can therefore be further simplified by invoking the Recycling Rule:

> as.Date(ISOdate(years, 1, days))
[1] "2010-01-15" "2011-01-21" "2012-01-20" "2013-01-18" "2014-01-17"

This recipe can also be extended to handle year, month, day, hour, minute, and second
data by using the ISOdatetime function (see the help page for details):

> ISOdatetime(year, month, day, hour, minute, second)

7.12 Getting the Julian Date

Problem

Given a Date object, you want to extract the Julian date—which is, in R, the number
of days since January 1, 1970.

Solution

Either convert the Date object to an integer or use the julian function:

> d <- as.Date("2010-03-15")
> as.integer(d)

[1] 14683

> julian(d)

[1] 14683

attr(,"origin")

[1] "1970-01-01"

Discussion

A Julian “date” is simply the number of days since a more-or-less arbitrary starting
point. In the case of R, that starting point is January 1, 1970, the same starting point
as Unix systems. So the Julian date for January 1, 1970 is zero, as shown here:

> as.integer(as.Date("1970-01-01"))
[1] o
> as.integer(as.Date("1970-01-02"))
(1] 1
> as.integer(as.Date("1970-01-03"))
[1] 2

: (etc.)
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7.13 Extracting the Parts of a Date

Problem

Given a Date object, you want to extract a date part such as the day of the week, the
day of the year, the calendar day, the calendar month, or the calendar year.

Solution

Convert the Date object to a POSIX1t object, which is a list of date parts. Then extract
the desired part from that list:

> d <- as.Date("2010-03-15")

> p <- as.POSIX1t(d)

> p$mday # Day of the month

[1] 15

> p$mon # Month (0 = January)

[1] 2

> p$year + 1900 # Year

[1] 2010

Discussion

The POSIX1t object represents a date as a list of date parts. Convert your Date object to
POSIX1t by using the as.POSIX1t function, which will give you a list with these members:

sec
Seconds (0-61)
min
Minutes (0-59)
hour
Hours (0-23)
mday
Day of the month (1-31)
mon
Month (0-11)
year
Years since 1900
wday
Day of the week (0-6, 0 = Sunday)
yday
Day of the year (0-365)

isdst
Daylight savings time flag
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Using these date parts, we can learn that April 1, 2010, is a Thursday (wday = 4) and
the 91st day of the year (because yday = 0 on January 1):

> d <- as.Date("2010-04-01")

> as.POSIX1t(d)$wday

[1] 4

> as.POSIX1t(d)$yday

[1] 90

A common mistake is failing to add 1900 to the year, giving the impression you are
living a long, long time ago:

> as.POSIX1t(d)$year # Oops!
[1] 110

> as.POSIX1t(d)$year + 1900

[1] 2010

7.14 (reating a Sequence of Dates

Problem

You want to create a sequence of dates, such as a sequence of daily, monthly, or annual
dates.

Solution

The seq function is a generic function that has a version for Date objects. It can create
a Date sequence similarly to the way it creates a sequence of numbers.

Discussion

A typical use of seq specifies a starting date (from), ending date (to), and increment
(by). An increment of 1 indicates daily dates:

> s <- as.Date("2012-01-01")

> e <- as.Date("2012-02-01")

> seq(from=s, to=e, by=1) # One month of dates

[1] "2012-01-01" "2012-01-02" "2012-01-03" "2012-01-04" "2012-01-05" "2012-01-06"

[7] "2012-01-07" "2012-01-08" "2012-01-09" "2012-01-10" "2012-01-11" "2012-01-12"
[13] "2012-01-13" "2012-01-14" "2012-01-15" "2012-01-16" "2012-01-17" "2012-01-18"
[19] "2012-01-19" "2012-01-20" "2012-01-21" "2012-01-22" "2012-01-23" "2012-01-24"
[25] "2012-01-25" "2012-01-26" "2012-01-27" "2012-01-28" "2012-01-29" "2012-01-30"
[31] "2012-01-31" "2012-02-01"

Another typical use specifies a starting date (from), increment (by), and number of dates
(length.out):
> seq(from=s, by=1, length.out=7) # Dates, one week apart

[1] "2012-01-01" "2012-01-02" "2012-01-03" "2012-01-04" "2012-01-05" "2012-01-06"
[7] "2012-01-07"
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The increment (by) is flexible and can be specified in days, weeks, months, or years:

> seq(from=s, by="month", length.out=12) # First of the month for one year
[1] "2012-01-01" "2012-02-01" "2012-03-01" "2012-04-01" "2012-05-01" "2012-06-01"
[7] "2012-07-01" "2012-08-01" "2012-09-01" "2012-10-01" "2012-11-01" "2012-12-01"
> seq(from=s, by="3 months", length.out=4) # Quarterly dates for one year

[1] "2012-01-01" "2012-04-01" "2012-07-01" "2012-10-01"

> seq(from=s, by="year", length.out=10) # Year-start dates for one decade
[1] "2012-01-01" "2013-01-01" "2014-01-01" "2015-01-01" "2016-01-01" "2017-01-01"
[7] "2018-01-01" "2019-01-01" "2020-01-01" "2021-01-01"

Be careful with by="month" near month-end. In this example, the end of February over-
flows into March, which is probably not what you wanted:

> seq(as.Date("2010-01-29"), by="month", len=3)
[1] "2010-01-29" "2010-03-01" "2010-03-29"
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CHAPTER 8
Probability

Introduction

Probability theory is the foundation of statistics, and R has plenty of machinery for
working with probability, probability distributions, and random variables. The recipes
in this chapter show you how to calculate probabilities from quantiles, calculate quan-
tiles from probabilities, generate random variables drawn from distributions, plot dis-
tributions, and so forth.

Names of Distributions

R has an abbreviated name for every probability distribution. This name is used to
identify the functions associated with the distribution. For example, the name of the
Normal distribution is “norm”, which is the root of these function names:

Function  Purpose

dnorm Normal density

pnorm Normal distribution function
gnorm Normal quantile function

rnorm Normal random variates

Table 8-1 describes some common discrete distributions, and Table 8-2 describes sev-
eral common continuous distributions.

Table 8-1. Discrete distributions

Discrete distribution Rname  Parameters

Binomial binom n = number of trials; p = probability of success for one trial

Geometric geom p = probability of success for one trial

Hypergeometric hyper m = number of whiteballsin urn;n=number of black ballsin urn; k=number

of balls drawn from urn
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Discrete distribution Rname  Parameters

Negative binomial (NegBinomial) ~ nbinom  size =number of successful trials; either prob = probability of successful trial
or mu =mean

Poisson pois lambda = mean

Table 8-2. Continuous distributions

Continuous distribution ~ Rname  Parameters
Beta beta shapeT; shape2
Cauchy cauchy location; scale

Chi-squared (Chisquare)  chisq df = degrees of freedom

Exponential exp rate
F f df1 and df2 = degrees of freedom
Gamma gamma rate; either rate or scale

Log-normal (Lognormal)  Inorm meanlog = mean on logarithmic scale;

sdlog = standard deviation on logarithmic scale

Logistic logis location; scale

Normal norm mean; sd = standard deviation

Student's ¢ (TDist) t df = degrees of freedom

Uniform unif min = lower limit; max = upper limit
Weibull weibull  shape; scale

Wilcoxon wilcox m = number of observations in first sample;

n = number of observations in second sample

All distribution-related functions require distributional parameters,
such as size and prob for the binomial or prob for the geometric. The
big “gotcha” is that the distributional parameters may not be what you
expect. For example, I would expect the parameter of an exponential
distribution to be 8, the mean. The R convention, however, is for the
exponential distribution to be defined by the rate = 1/, so 1 often supply
the wrong value. The moral is, study the help page before you use a
function related to a distribution. Be sure you’ve got the parameters
right.

&

Getting Help on Probability Distributions

To see the R functions related to a particular probability distribution, use the help
command and the full name of the distribution. For example, this will show the func-
tions related to the Normal distribution:

> ?Normal
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Some distributions have names that don’t work well with the help command, such as
“Student’s t”. They have special help names, as noted in Tables 8-1 and 8-2: NegBi-
nomial, Chisquare, Lognormal, and TDist. Thus, to get help on the Student’s t distri-
bution, use this:

> ?TDist

See Also

There are many other distributions implemented in downloadable packages; see the
CRAN task view devoted to probability distributions. The SuppDists package is part of
the R base, and it includes ten supplemental distributions. The MASS package, which is
also part of the base, provides additional support for distributions, such as maximum-
likelihood fitting for some common distributions as well as sampling from a multivari-
ate Normal distribution.

8.1 Counting the Number of Combinations

Problem

You want to calculate the number of combinations of n items taken k at a time.

Solution

Use the choose function:

> choose(n, k)

Discussion

A common problem in computing probabilities of discrete variables is counting com-
binations: the number of distinct subsets of size k that can be created from 7 items. The
number is given by n!/r!(n - r)!, but it’s much more convenient to use the choose
function—especially as n and k grow larger:

> choose(5,3) # How many ways can we select 3 items from 5 items?
[1] 10

> choose(50,3) # How many ways can we select 3 items from 50 items?
[1] 19600

> choose(50,30) # How many ways can we select 30 items from 50 items?

[1] 4.712921e+13

These numbers are also known as binomial coefficients.

See Also

This recipe merely counts the combinations; see Recipe 8.2 to actually generate them.
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8.2 Generating Combinations

Problem

You want to generate all combinations of 7 items taken k at a time.

Solution

Use the combn function:

> combn(items, k)

Discussion

We can use combn(1:5,3) to generate all combinations of the numbers 1 through 5 taken
three at a time:

> combn(1:5,3)

[,1] [,2] [,3] [,4] [,5] [»6] [,7] [,8] [,9] [,10]
[1,] 1 1 1 1 1 1 2 2 2 3
[2,] 2 2 2 3 3 4 3 3 4 4
3] 3 4 5 4 5 5 4 5 5 5

The function is not restricted to numbers. We can generate combinations of strings,
too. Here are all combinations of five treatments taken three at a time:

> combn(c("T1","T2","T3","T4","T5"), 3)

[,1] [,21 [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] "T2" "T1" "T2" "T1" "T1" "T1" "T2" "T2" "T2" "T3"
[2,] "T2" "T2" "T2" "T3" "T3" "T4" "T3" "T3" "T4" "T4"
[3,] "T3" "T4" "T5" "T4" "Ts" "T5" "T4" "T5" "T5" "T5"

As the number of items, 7, increases, the number of combinations can
explode—especially if k is not near to 1 or n.

&

See Also

See Recipe 8.1 to count the number of possible combinations before you generate a
huge set.

8.3 Generating Random Numbers

Problem

You want to generate random numbers.
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Solution

The simple case of generating a uniform random number between 0 and 1 is handled
by the runif function. This example generates one uniform random number:

> runif(1)

R can generate random variates from other distributions, however. For a given distri-
bution, the name of the random number generator is “r” prefixed to the distribution’s
abbreviated name (e.g., rnorm for the Normal distribution’s random number generator).

This example generates one random value from the standard normal distribution:

> rnorm(1)

Discussion

Most programming languages have a wimpy random number generator that generates
one random number, uniformly distributed between 0.0 and 1.0, and that’s all. Not R.

R can generate random numbers from many probability distributions other than the
uniform distribution. The simple case of generating uniform random numbers between
0 and 1 is handled by the runif function:

> runif(1)

[1] 0.5119812
The argument of runif is the number of random values to be generated. Generating a
vector of 10 such values is as easy as generating one:

> runif(10)

[1] 0.03475948 0.88950680 0.90005434 0.95689496 0.55829493 0.18407604
[7] 0.87814788 0.71057726 0.11140864 0.66392239

There are random number generators for all built-in distributions. Simply prefix the
distribution name with “r” and you have the name of the corresponding random num-
ber generator. Here are some common ones:

> runif(1, min=-3, max=3) # One uniform variate between -3 and +3
[1] 2.954591

> rnorm(1) # One standard Normal variate

[1] 1.048491

> rnorm(1, mean=100, sd=15) # One Normal variate, mean 100 and SD 15
[1] 108.7300

> rbinom(1, size=10, prob=0.5) # One binomial variate

[1] 3

> rpois(1, lambda=10) # One Poisson variate

[1] 13

> rexp(1, rate=0.1) # One exponential variate

[1] 8.430267

> rgamma(1, shape=2, rate=0.1) # One gamma variate

[1] 20.47334
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As with runif, the first argument is the number of random values to be generated.
Subsequent arguments are the parameters of the distribution, such as mean and sd for
the Normal distribution or size and prob for the binomial. See the function’s R help
page for details.

The examples given so far use simple scalars for distributional parameters. Yet the
parameters can also be vectors, in which case R will cycle through the vector while
generating random values. The following example generates three normal random val-
ues drawn from distributions with means of -10, 0, and +10, respectively (all distri-
butions have a standard deviation of 1.0):

> rnorm(3, mean=c(-10,0,+10), sd=1)

[1] -11.195667 2.615493 10.294831
Thatis a powerful capability in such cases as hierarchical models, where the parameters
are themselves random. The next example calculates 100 draws of a normal variate
whose mean is itself randomly distributed and with hyperparameters of 4 = 0 and o =
0.2:

> means <- rnorm(100, mean=0, sd=0.2)

> rnorm(100, mean=means, sd=1)

[1] -0.410299581 1.030662055 -0.920933054 -0.572994026 0.984743043

[6] 1.251189879 0.873930251 0.509027943 -0.788626886 -0.113224062
[11] -0.035042586 0.150925067 0.634036678 1.627473761 -0.812021925

: (etc.)

If you are generating many random values and the vector of parameters is too short, R
will apply the Recycling Rule to the parameter vector.

See Also

See the “Introduction” to this chapter.

8.4 Generating Reproducible Random Numbers

Problem

You want to generate a sequence of random numbers, but you want to reproduce the
same sequence every time your program runs.

Solution

Before running your R code, call the set.seed function to initialize the random number
generator to a known state:

> set.seed(666) # Or use any other positive integer
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Discussion

After generating random numbers, you may often want to reproduce the same sequence
of “random” numbers every time your program executes. That way, you get the same
results from run to run. I once supported a complicated Monte Carlo analysis of a huge
portfolio of securities. The users complained about getting a slightly different result
each time the program ran. No kidding, I replied; it’s all based on random numbers,
so of course there is randomness in the output. The solution was to set the random
number generator to a known state at the beginning of the program. That way, it would
generate the same (quasi-)random numbers each time and thus yield consistent, re-
producible results.

In R, the set.seed function sets the random number generator to a known state. The
function takes one argument, an integer. Any positive integer will work, but you must
use the same one in order to get the same initial state.

The function returns nothing. It works behind the scenes, initializing (or reinitializing)
the random number generator. The key here is that using the same seed restarts the
random number generator back at the same place:

> set.seed(165) # Initialize the random number generator to a known state
> runif(10) # Generate ten random numbers

[1] 0.1159132 0.4498443 0.9955451 0.6106368 0.6159386 0.4261986 0.6664884

[8] 0.1680676 0.7878783 0.4421021

> set.seed(165) # Reinitialize to the same known state

> runif(10) # Generate the same ten "random" numbers

[1] 0.1159132 0.4498443 0.9955451 0.6106368 0.6159386 0.4261986 0.6664884

[8] 0.1680676 0.7878783 0.4421021

When you set the seed value and freeze your sequence of random num-

= bers, you are eliminating a source of randomness that is critical to al-
gorithms such as Monte Carlo simulations. Before you call set.seed in
your application, ask yourself: Am [ undercutting the value of my pro-
gram or perhaps even damaging its logic?

See Also

See Recipe 8.3 for more about generating random numbers.

8.5 Generating a Random Sample

Problem

You want to sample a dataset randomly.
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Solution

The sample function will randomly select 7 items from a vector:

> sample(vec, n)

Discussion
Suppose your World Series data contains a vector of years when the Series was played.
You can select 10 years at random using sample:

> sample(world.series$year, 10)
[1] 1906 1963 1966 1928 1905 1924 1961 1959 1927 1934

The items are randomly selected, so running sample again (usually) produces a different
result:

> sample(world.series$year, 10)
[1] 1968 1947 1966 1916 1970 1961 1936 1913 1914 1958

The sample function normally samples without replacement, meaning it will not select
the same item twice. Some statistical procedures (especially the bootstrap) require
sampling with replacement, which means that one item can appear multiple times in
the sample. Specify replace=TRUE to sample with replacement.

It’s easy to implement a simple bootstrap using sampling with replacement. This code
fragment repeatedly samples a dataset x and calculates the sample median:

medians <- numeric(1000)
for (i in 1:1000) {

medians[i] <- median(sample(x, replace=TRUE))
}

From the bootstrap estimates, we can estimate the confidence interval for the median:

ci <- quantile(medians, c(0.025, 0.975))
cat("95% confidence interval is (", ci, ")\n")

Typical output would be:

95% confidence interval is ( 1.642021 1.702843 )

See Also

See Recipe 8.7 for randomly permuting a vector and Recipe 13.8 for more about
bootstrapping.

8.6 Generating Random Sequences

Problem

You want to generate a random sequence, such as a series of simulated coin tosses or
a simulated sequence of Bernoulli trials.
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Solution

Use the sample function. Sample from the set of possible values, and set replace=TRUE:

> sample(set, n, replace=TRUE)

Discussion

The sample function randomly selects items from a set. It normally samples without
replacement, which means that it will not select the same item twice. With
replace=TRUE, however, sample can select items over and over; this allows you to gen-
erate long, random sequences of items.

The following example generates a random sequence of 10 simulated flips of a coin:
> sample(c("H","T"), 10, replace=TRUE)
[1] "H"™ "H" "H" T T OCHU T O“HU OHUOTT
The next example generates a sequence of 20 Bernoulli trials—random successes or
failures. We use TRUE to signify a success:
> sample(c(FALSE,TRUE), 20, replace=TRUE)

[1] TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
[13] TRUE TRUE FALSE TRUE TRUE FALSE FALSE TRUE

By default, sample will choose equally among the set elements and so the probability
of selecting either TRUE or FALSE is 0.5. With a Bernoulli trial, the probability p of success
is not necessarily 0.5. You can bias the sample by using the prob argument of sample;
this argument is a vector of probabilities, one for each set element. Suppose we want
to generate 20 Bernoulli trials with a probability of success p = 0.8. We set the proba-
bility of FALSE to be 0.2 and the probability of TRUE to 0.8:

> sample(c(FALSE,TRUE), 20, replace=TRUE, prob=c(0.2,0.8))

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[13] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE

The resulting sequence is clearly biased toward TRUE. I chose this example because it’s
a simple demonstration of a general technique. For the special case of a binary-valued
sequence you can use rbinom, the random generator for binomial variates:

> rbinom(10, 1, 0.8)
[1]1011111111

8.7 Randomly Permuting a Vector

Problem

You want to generate a random permutation of a vector.

Solution

If v is your vector, then sample(v) returns a random permutation.
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Discussion

L associate the sample function with sampling from large datasets. However, the default
parameters enable you to create a random rearrangement of the dataset. The function
call sample(v) is equivalent to:

sample(v, size=length(v), replace=FALSE)
which means “select all the elements of v in random order while using each element
exactly once. Thatis a random permutation.” Here is a random permutation of 1, ..., 10:

> sample(1:10)
[1] 5 8 7 43 9 2 6 110

See Also

See Recipe 8.5 for more about sample.

8.8 Calculating Probabilities for Discrete Distributions

Problem

You want to calculate either the simple or the cumulative probability associated with
a discrete random variable.

Solution

For a simple probability, P(X = x), use the density function. All built-in probability
distributions have a density function whose name is “d” prefixed to the distribution
name—for example, dbinom for the binomial distribution.

For a cumulative probability, P(X < x), use the distribution function. All built-in prob-
ability distributions have a distribution function whose name is “p” prefixed to the
distribution name; thus, pbinom is the distribution function for the binomial
distribution.

Discussion

Suppose we have a binomial random variable X over 10 trials, where each trial has a
success probability of 1/2. Then we can calculate the probability of observing x = 7 by
calling dbinom:

> dbinom(7, size=10, prob=0.5)
[1] 0.1171875

That calculates a probability of about 0.117. R calls dbinom the density function. Some
textbooks call it the probability mass function or the probability function. Calling it a
density function keeps the terminology consistent between discrete and continuous
distributions (Recipe 8.9).
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The cumulative probability, P(X < x), is given by the distribution function, which is
sometimes called the cumulative probability function. The distribution function for the
binomial distribution is pbinom. Here is the cumulative probability for x = 7
(l.e, PX<7)):

> pbinom(7, size=10, prob=0.5)
[1] 0.9453125

[t appears the probability of observing X < 7 is about 0.945.
Here are the density functions and distribution functions for some common discrete

distributions:

Distribution  Density function: P(X=x)  Distribution function: P(X < x)

Binomial dbinom(x, size, prob) pbinom(x, size, prob)
Geometric dgeom(x, prob) pgeom(x, prob)
Poisson dpois(x, lambda) ppois(x, lambda)

The complement of the cumulative probability is the survival function, P(X > x). All of
the distribution functions let you find this right-tail probability simply by specifying
lower.tail=FALSE:

> pbinom(7, size=10, prob=0.5, lower.tail=FALSE)
[1] 0.0546875

Thus we see that the probability of observing X > 7 is about 0.055.

The interval probability, P(x; < X < x5), is the probability of observing X between the
limits xq and x;. It is simply calculated as the difference between two cumulative prob-
abilities: P(X < x,) - P(X < x;). Here is P(3 < X < 7) for our binomial variable:

> pbinom(7,size=10,prob=0.5) - pbinom(3,size=10,prob=0.5)
[1] 0.7734375

R lets you specify multiple values of x for these functions and will return a vector of the
corresponding probabilities. Here we calculate two cumulative probabilities, P(X < 3)
and P(X £7), in one call to pbinom:

> pbinom(c(3,7), size=10, prob=0.5)
[1] 0.1718750 0.9453125

This leads to a one-liner for calculating interval probabilities. The diff function cal-
culates the difference between successive elements of a vector. We apply it to the output
of pbinom to obtain the difference in cumulative probabilities—in other words, the in-
terval probability:

> diff(pbinom(c(3,7), size=10, prob=0.5))
[1] 0.7734375
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See Also

See this chapter’s “Introduction” for more about the built-in probability distributions.

8.9 Calculating Probabilities for Continuous Distributions

Problem

You want to calculate the distribution function (DF) or cumulative distribution func-
tion (CDF) for a continuous random variable.

Solution

Use the distribution function, which calculates P(X < x). All built-in probability dis-

tributions have a distribution function whose name is “p” prefixed to the distribution’s
abbreviated name—for instance, pnorm for the Normal distribution.

Discussion

The R functions for probability distributions follow a consistent pattern, so the solution
to this recipe is essentially identical to the solution for discrete random variables
(Recipe 8.8). The significant difference is that continuous variables have no “proba-
bility” at a single point, P(X = x). Instead, they have a density at a point.

Given that consistency, the discussion of distribution functions in Recipe 8.8 is
applicable here, too. The following table gives the distribution function for several
continuous distributions:

Distribution Distribution function: P(X < x)
Normal pnorm(x, mean, sd)

Student's t pt(x, df)

Exponential pexp(x, rate)

Gamma pgamma(x, shape, rate)

Chi-squared ()  pchisq(x, df)

We can use pnorm to calculate the probability that a man is shorter than 66 inches,
assuming that men’s heights are normally distributed with a mean of 70 inches and a
standard deviation of 3 inches. Mathematically speaking, we want P(X < 66) given that
X ~ N(70, 3):

> pnorm(66, mean=70, sd=3)
[1] 0.09121122
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Likewise, we can use pexp to calculate the probability that an exponential variable with
a mean of 40 could be less than 20:

> pexp(20, rate=1/40)

[1] 0.3934693
Just as for discrete probabilities, the functions for continuous probabilities use
lower.tail=FALSE to specify the survival function, P(X > x). This call to pexp gives the
probability that the same exponential variable could be greater than 50:

> pexp(50, rate=1/40, lower.tail=FALSE)
[1] 0.2865048

Also like discrete probabilities, the interval probability for a continuous variable, P(x; <
X < x7), is computed as the difference between two cumulative probabilities, P(X <
X,) - P(X < x1). For the same exponential variable, here is P(20 < X < 50), the probability
that it could fall between 20 and 50:

> pexp(50,rate=1/40) - pexp(20,rate=1/40)
[1] 0.3200259

See Also

See this chapter’s “Introduction” for more about the built-in probability distributions.

8.10 Converting Probabilities to Quantiles

Problem

Given a probability p and a distribution, you want to determine the corresponding
quantile for p: the value x such that P(X < x) = p.

Solution

Every built-in distribution includes a quantile function that converts probabilities to
“_»

quantiles. The function’s name is “q” prefixed to the distribution name; thus, for in-
stance, qnorm is the quantile function for the Normal distribution.

The first argument of the quantile function is the probability. The remaining arguments
are the distribution’s parameters, such as mean, shape, or rate:

> qnorm(0.05, mean=100, sd=15)
[1] 75.3272

Discussion

A common example of computing quantiles is when we compute the limits of a con-
fidence interval. If we want to know the 95% confidence interval (&« =0.05) of a standard
normal variable, then we need the quantiles with probabilities of a/2 = 0.025 and
(1-a)/2=0.975:

8.10 Converting Probabilities to Quantiles | 189

www.it-ebooks.info


http://www.it-ebooks.info

> qnorm(0.025)
[1] -1.959964
> qnorm(0.975)
[1] 1.959964

In the true spirit of R, the first argument of the quantile functions can be a vector of
probabilities, in which case we get a vector of quantiles. We can simplify this example
into a one-liner:

> qnorm(c(0.025,0.975))
[1] -1.950964 1.959964

All the built-in probability distributions provide a quantile function. Here are the
quantile functions for some common discrete distributions:

Distribution  Quantile function

Binomial gbinom(p, size, prob)
Geometric qgeom(p, prob)
Poisson gpois(p, lambda)

And here are the quantile functions for common continuous distributions:

Distribution Quantile function

Normal gnorm(p, mean, sd)

Student's t qt(p, df)

Exponential gexp(p, rate)

Gamma qgamma(p, shape, rate=rate) or qgamma(p, shape, scale=scale)

Chi-squared (x¥)  qchisq(p, df)

See Also

Determining the quantiles of a data set is different from determining the quantiles of a
distribution—see Recipe 9.5.

8.11 Plotting a Density Function

Problem

You want to plot the density function of a probability distribution.

Solution

Define a vector x over the domain. Apply the distribution’s density function to x and
then plot the result. This code snippet plots the standard normal distribution:
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> x <- seq(from=-3, to=+3, length.out=100)
> plot(x, dnorm(x))

Discussion

All the built-in probability distributions include a density function. For a particular
density, the function name is “d” prepended to the density name. The density function
for the Normal distribution is dnorm, the density for the gamma distribution is dgamma,
and so forth.

If the first argument of the density function is a vector, then the function calculates the
density at each point and returns the vector of densities.

The following code creates a 2 x 2 plot of four densities, as shown in Figure 8-1:

x <- seq(from=0, to=6, length.out=100) # Define the density domains

ylim <- c(0, 0.6)

par(mfrow=c(2,2)) # Create a 2x2 plotting area

plot(x, dunif(x,min=2,max=4), main="Uniform", # Plot a uniform density
type="1", ylim=ylim)

plot(x, dnorm(x,mean=3,sd=1), main="Normal", # Plot a Normal density
type="1", ylim=ylim)

plot(x, dexp(x,rate=1/2), main="Exponential”, # Plot an exponential density
type="1", ylim=ylim)

plot(x, dgamma(x,shape=2,rate=1), main="Gamma", # Plot a gamma density

type="1", ylim=ylim)

A raw density plot is rarely useful or interesting by itself, and we usually shade a region
of interest. Figure 8-2 shows a standard normal distribution with shading for the region
of1<z<2.

We create the plot by first plotting the density and then shading a region with the
polygon function. The polygon function draws a series of lines around the highlighted
area and fills it.

First, we draw the density curve:
x <- seq(from=-3, to=+3, length.out=100)
y <- dnorm(x)
plot(x, y, main="Standard Normal Distribution", type='1l",
ylab="Density", xlab="Quantile")
abline(h=0)

Next, we define the region of interest by a series of line segments. The line segments,
in turn, are defined by a series of (x, y) coordinates. The polygon function will connect
the first and last (x, y) points to close the polygon:

# The body of the polygon follows the density curve where 1 <= z <= 2

region.x <- x[1 <= x & x <= 2]
region.y <- y[1 <= x & x <= 2]

# We add initial and final segments, which drop down to the Y axis
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region.x <- c(region.x[1], region.x, tail(region.x,1))
region.y <- c( 0, region.y, 0)

Finally, we call polygon to plot the boundary of the region and fill it:
polygon(region.x, region.y, density=10)
By default, polygon does not fill the region. Setting density=10 turns on filling with thin

lines at a 45° angle. To fill with a color instead, we would set density to -1 and set
col to the desired color:

polygon(region.x, region.y, density=-1, col="red")

Figure 8-1. Plotting density functions
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Figure 8-2. Density plot with shading
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CHAPTER 9
General Statistics

Introduction

Any significant application of R includes statistics or models or graphics. This chapter
addresses the statistics. Some recipes simply describe how to calculate a statistic, such
as relative frequency. Most recipes involve statistical tests or confidence intervals. The
statistical tests let you choose between two competing hypotheses; that paradigm is
described next. Confidence intervals reflect the likely range of a population parameter
and are calculated based on your data sample.

Null Hypotheses, Alternative Hypotheses, and p-Values

Many of the statistical tests in this chapter use a time-tested paradigm of statistical
inference. In the paradigm, we have one or two data samples. We also have two com-
peting hypotheses, either of which could reasonably be true.

One hypothesis, called the null hypothesis, is that nothing happened: the mean was
unchanged; the treatment had no effect; you got the expected answer; the model did
not improve; and so forth.

The other hypothesis, called the alternative hypothesis, is that something happened: the
mean rose; the treatment improved the patients’ health; you got an unexpected answer;
the model fit better; and so forth.

We want to determine which hypothesis is more likely in light of the data:

1. To begin, we assume that the null hypothesis is true.

2. We calculate a test statistic. It could be something simple, such as the mean of the
sample, or it could be quite complex. The critical requirement is that we must know
the statistic’s distribution. We might know the distribution of the sample mean,
for example, by invoking the Central Limit Theorem.

3. From the statistic and its distribution we can calculate a p-value, the probability of

a test statistic value as extreme or more extreme than the one we observed, while
assuming that the null hypothesis is true.
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4. If the p-value is too small, we have strong evidence against the null hypothesis.
This is called rejecting the null hypothesis.

5. If the p-value is not small then we have no such evidence. This is called failing to
reject the null hypothesis.

There is one necessary decision here: When is a p-value “too small”?

In this book, I follow the common convention that we reject the null
hypothesis when p < 0.05 and fail to reject it when p > 0.05. In statistical

| terminology, I chose a significance level of a = 0.05 to define the border
between strong evidence and insufficient evidence against the null
hypothesis.

But the real answer is, “it depends”. Your chosen significance level depends on your
problem domain. The conventional limit of p < 0.05 works for many problems. In my
work, the data is especially noisy and so I am often satisfied with p < 0.10. For someone
working in high-risk areas, p < 0.01 or p < 0.001 might be necessary.

In the recipes, I mention which tests include a p-value so that you can compare the
p-value against your chosen significance level of a. I worded the recipes to help you
interpret the comparison. Here is the wording from Recipe 9.4, a test for the inde-
pendence of two factors:

Conventionally, a p-value of less than 0.05 indicates that the variables are likely not
independent whereas a p-value exceeding 0.05 fails to provide any such evidence.

This is a compact way of saying:
* The null hypothesis is that the variables are independent.

* The alternative hypothesis is that the variables are not independent.

* For a=0.05, if p < 0.05 then we reject the null hypothesis, giving strong evidence
that the variables are not independent; if p > 0.05, we fail to reject the null
hypothesis.

* You are free to choose your own a, of course, in which case your decision to reject
or fail to reject might be different.

Remember, the recipe states the informal interpretation of the test results, not the rig-
orous mathematical interpretation. I use colloquial language in the hope that it will
guide you toward a practical understanding and application of the test. If the precise
semantics of hypothesis testing is critical for your work, I urge you to consult the ref-
erence cited under “See Also” on page 197 or one of the other fine textbooks on math-
ematical statistics.
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Confidence Intervals

Hypothesis testing is a well-understood mathematical procedure, but it can be frus-
trating. First, the semantics is tricky. The test does not reach a definite, useful conclu-
sion. You might get strong evidence against the null hypothesis, but that’s all you’ll
get. Second, it does not give you a number, only evidence.

If you want numbers then use confidence intervals, which bound the estimate of a
population parameter at a given level of confidence. Recipes in this chapter can calcu-
late confidence intervals for means, medians, and proportions of a population.

For example, Recipe 9.9 calculates a 95% confidence interval for the population mean
based on sample data. The interval is 97.16 < u < 103.98, which means there is a 95%
probability that the population’s mean, y, is between 97.16 and 103.98.

See Also

Statistical terminology and conventions can vary. This book generally follows the con-
ventions of Mathematical Statistics with Applications, 6th ed., by Wackerly et al. (Dux-
bury Press). I recommend this book also for learning more about the statistical tests
described in this chapter.

9.1 Summarizing Your Data

Problem

You want a basic statistical summary of your data.

Solution

The summary function gives some useful statistics for vectors, matrices, factors, and data
frames:
> summary(vec)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1803 1.1090 1.9520 2.1750 2.6920 7.3290

Discussion

The Solution exhibits the summary of a vector. The 1st Qu. and 3rd Qu. are the first
and third quartile, respectively. Having both the median and mean is useful because
you can quickly detect skew. The Solution, for example, shows a mean that is larger
than the median; this indicates a possible skew to the right.
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The summary of a matrix works column by column. Here we see the summary of a
matrix, mat, with three columns named Samp1, Samp2, and Samp3:

> summary(mat)

Samp1 Samp2 Samp3
Min. :0.1803  Min. : 0.1378  Min. :0.1605
1st Qu.:1.1094 1st Qu.: 1.2686 1st Qu.:1.0056
Median :1.9517 Median : 1.8733 Median :1.8466
Mean 12,1748  Mean : 2.2436  Mean 12.0562
3rd Qu.:2.6916  3rd Qu.: 2.9373 3rd Qu.:2.7666
Max. 7.3289  Max. :11.4175  Max. :6.3870

The summary of a factor gives counts:

> summary(fac)
Yes No Maybe
44 20 36

The summary of a data frame incorporates all these features. It works column by col-
umn, giving an appropriate summary according to the column type. Numeric values
receive a statistical summary and factors are counted (character strings are not
summarized):

> summary (suburbs)

city county state pop

Length:16 Cook 17 IL:12 Min. 63348

Class :character Kane 2 IN: 2 1st Qu.: 73833

Mode :character Lake(IN):2 WI: 2 Median : 86700
DuPage :1 Mean : 265042
Kendall :1 3rd Qu.: 103615
Kenosha :1 Max.  :2853114
(Other) :2

The “summary” of a list is pretty funky: just the data type of each list member. Here is
a summary of a list of vectors:

> summary(vec.list)

Length Class Mode
Samp1 100 -none- numeric
Samp2 100 -none- numeric
Samp3 100 -none- numeric

To summarize a list of vectors, apply summary to each list element:

> lapply(vec.list, summary)

$Samp1

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1803 1.1090 1.9520 2.1750 2.6920 7.3290
$Samp2

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1378 1.2690 1.8730 2.2440 2.9370 11.4200
$Samp3

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.1605 1.0060 1.8470 2.0560 2.7670 6.3870
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Unfortunately, the summary function does not compute any measure of variability, such
as standard deviation or median absolute deviation. This is a serious shortcoming, so
[ usually call sd or mad right after calling summary.

See Also
See Recipes 2.6 and 6.2.

9.2 (alculating Relative Frequencies

Problem

You want to count the relative frequency of certain observations in your sample.

Solution

Identify the interesting observations by using a logical expression; then use the mean
function to calculate the fraction of observations it identifies. For example, given a
vector x, you can find the relative frequency of positive values in this way:

> mean(x > 0)

Discussion

A logical expression, such as x > 0, produces a vector of logical values (TRUE and
FALSE), one for each element of x. The mean function converts those values to 1s and Os,
respectively, and computes the average. This gives the fraction of values that are
TRUE—in other words, the relative frequency of the interesting values. In the Solution,
for example, that’s the relative frequency of positive values.

The concept here is pretty simple. The tricky part is dreaming up a suitable logical
expression. Here are some examples:

mean(lab == “NJ”)
Fraction of lab values that are New Jersey
mean(after > before)
Fraction of observations for which the effect increases
mean(abs (x-mean(x)) > 2*sd(x))
Fraction of observations that exceed two standard deviations from the mean
mean(diff(ts) > 0)
Fraction of observations in a time series that are larger than the previous
observation
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9.3 Tabulating Factors and Creating Contingency Tables

Problem

You want to tabulate one factor or to build a contingency table from multiple factors.

Solution

The table function produces counts of one factor:
> table(f)

It can also produce contingency tables (cross-tabulations) from two or more factors:
> table(f1, f2)

Discussion

The table function counts the levels of one factor, such as these counts of initial and
outcome (which are factors):
> table(initial)
initial
Yes No Maybe
37 36 27
> table(outcome)
outcome
Fail Pass
47 53

The greater power of table is in producing contingency tables, also known as cross-
tabulations. Each cell in a contingency table counts how many times that row—column
combination occurred:
> table(initial, outcome)
outcome
initial Fail Pass
Yes 13 24
No 24 12
Maybe 10 17

This table shows that the combination of initial = Yes and outcome = Fail occurred
13 times, the combination of initial = Yes and outcome = Pass occurred 24 times, and
so forth.

See Also

The xtabs function can also produce a contingency table. It has a formula interface,
which some people prefer.
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9.4 Testing Categorical Variables for Independence

Problem

You have two categorical variables that are represented by factors. You want to test
them for independence using the chi-squared test.

Solution

Use the table function to produce a contingency table from the two factors. Then use
the summary function to perform a chi-squared test of the contingency table:

> summary(table(fac1,fac2))
The output includes a p-value. Conventionally, a p-value of less than 0.05 indicates

that the variables are likely not independent whereas a p-value exceeding 0.05 fails to
provide any such evidence.

Discussion

This example performs a chi-squared test on the contingency table of Recipe 9.3 and
yields a p-value of 0.01255:

> summary(table(initial,outcome))
Number of cases in table: 100
Number of factors: 2
Test for independence of all factors:
Chisq = 8.757, df = 2, p-value = 0.01255

The small p-value indicates that the two factors, initial and outcome, are probably not
independent. Practically speaking, we conclude there is some connection between the
variables.

See Also

The chisq.test function can also perform this test.

9.5 Calculating Quantiles (and Quartiles) of a Dataset

Problem

Given a fraction f, you want to know the corresponding quantile of your data. That is,
you seek the observation x such that the fraction of observations below x is f.

Solution

Use the quantile function. The second argument is the fraction, f:

> quantile(vec, f)
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For quartiles, simply omit the second argument altogether:

> quantile(vec)

Discussion
Suppose vec contains 1,000 observations between 0 and 1. The quantile function can
tell you which observation delimits the lower 5% of the data:
> quantile(vec, .05)
5%
0.04575003

The quantile documentation refers to the second argument as a “probability”, which
is natural when we think of probability as meaning relative frequency.

In true R style, the second argument can be a vector of probabilities; in this case,
quantile returns a vector of corresponding quantiles, one for each probability:

> quantile(vec, c(.05, .95))
5% 95%
0.04575003 0.95122306

That is a handy way to identify the middle 90% (in this case) of the observations.

If you omit the probabilities altogether then R assumes you want the probabilities 0,
0.25,0.50, 0.75, and 1.0—in other words, the quartiles:

> quantile(vec)
0% 25% 50% 75% 100%
0.001285589 0.260075658 0.479866042 0.734801500 0.997817661

Amazingly, the quantile function implements nine (yes, nine) different algorithms for
computing quantiles. Study the help page before assuming that the default algorithm
is the best one for you.

9.6 Inverting a Quantile

Problem

Given an observation x from your data, you want to know its corresponding quantile.
That is, you want to know what fraction of the data is less than x.

Solution

Assuming your data is in a vector vec, compare the data against the observation and
then use mean to compute the relative frequency of values less than x:

> mean(vec < x)
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Discussion

The expression vec < x compares every element of vec against x and returns a vector
of logical values, where the nth logical value is TRUE if vec[n] < x. The mean function
converts those logical values to 0 and 1: 0 for FALSE and 1 for TRUE. The average of all
those 1s and Os is the fraction of vec that is less than x, or the inverse quantile of x.

See Also

This is an application of the general approach described in Recipe 9.2.

9.7 Converting Data to Z-Scores

Problem

You have a dataset, and you want to calculate the corresponding z-scores for all data
elements. (This is sometimes called normalizing the data.)

Solution

Use the scale function:

> scale(x)

This works for vectors, matrices, and data frames. In the case of a vector, scale returns
the vector of normalized values. In the case of matrices and data frames, scale nor-
malizes each column independently and returns columns of normalized values in a
matrix.

Discussion

You might also want to normalize a single value y relative to a dataset x. That can be
done by using vectorized operations as follows:

> (y - mean(x)) / sd(x)

9.8 Testing the Mean of a Sample (t Test)

Problem

You have a sample from a population. Given this sample, you want to know if the mean
of the population could reasonably be a particular value m.

Solution

Apply the t.test function to the sample x with the argument mu=m:

> t.test(x, mu=m)
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The output includes a p-value. Conventionally, if p < 0.05 then the population mean
is unlikely to be m whereas p > 0.05 provides no such evidence.

If your sample size n is small, then the underlying population must be normally dis-
tributed in order to derive meaningful results from the ¢ test. A good rule of thumb is
that “small” means n < 30.

Discussion

The ¢ test is a workhorse of statistics, and this is one of its basic uses: making inferences
about a population mean from a sample. The following example simulates sampling
from a normal population with mean p = 100. It uses the ¢ test to ask if the population
mean could be 95, and t.test reports a p-value of 0.001897:

> X <- rnorm(50, mean=100, sd=15)
> t.test(x, mu=95)

One Sample t-test

data: x
t = 3.2832, df = 49, p-value = 0.001897
alternative hypothesis: true mean is not equal to 95
95 percent confidence interval:
97.16167 103.98297
sample estimates:
mean of x
100.5723

The p-value is small and so it’s unlikely (based on the sample data) that 95 could be
the mean of the population.

Informally, we could interpret the low p-value as follows. If the population mean were
really 95, then the probability of observing our test statistic (t = 3.2832 or something
more extreme) would be only 0.001897. That is very improbable, yet that is the value
we observed. Hence we conclude that the null hypothesis is wrong; therefore, the sam-
ple data does not support the claim that the population mean is 95.

In sharp contrast, testing for a mean of 100 gives a p-value of 0.7374:

> t.test(x, mu=100)
One Sample t-test

data: x
t = 0.3372, df = 49, p-value = 0.7374
alternative hypothesis: true mean is not equal to 100
95 percent confidence interval:
97.16167 103.98297
sample estimates:
mean of x
100.5723
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The large p-value indicates that the sample is consistent with assuming a population
mean y of 100. In statistical terms, the data does not provide evidence against the true
mean being 100.

A common case is testing for a mean of zero. If you omit the mu argument, it defaults
to zero.

See Also
The t.test is a many-splendored thing. See Recipes 9.9 and 9.15 for other uses.

9.9 Forming a Confidence Interval for a Mean

Problem

You have a sample from a population. Given that sample, you want to determine a
confidence interval for the population’s mean.

Solution

Apply the t.test function to your sample x:
> t.test(x)

The output includes a confidence interval at the 95% confidence level. To see intervals
at other levels, use the conf.level argument.

As in Recipe 9.8, if your sample size n is small then the underlying population must be
normally distributed for there to be a meaningful confidence interval. Again, a good
rule of thumb is that “small” means n < 30.

Discussion

Applying the t.test function to a vector yields a lot of output. Buried in the output is
a confidence interval:

> X <- rnorm(50, mean=100, sd=15)
> t.test(x)

One Sample t-test

data: x
t = 59.2578, df = 49, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:

97.16167 103.98297
sample estimates:
mean of x

100.5723
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In this example, the confidence interval is approximately 97.16 < u < 103.98, which is
sometimes written simply as (97.16, 103.98).
We can raise the confidence level to 99% by setting conf.level=0.99:

> t.test(x, conf.level=0.99)

One Sample t-test

data: x
t = 59.2578, df = 49, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
99 percent confidence interval:
96.0239 105.1207
sample estimates:
mean of x
100.5723

That change widens the confidence interval to 96.02 < y < 105.12.

9.10 Forming a Confidence Interval for a Median

Problem

You have a data sample, and you want to know the confidence interval for the median.

Solution

Use the wilcox.test function, setting conf.int=TRUE:

> wilcox.test(x, conf.int=TRUE)

The output will contain a confidence interval for the median.

Discussion

The procedure for calculating the confidence interval of a mean is well-defined and
widely known. The same is not true for the median, unfortunately. There are several
procedures for calculating the median’s confidence interval. None of them is “the”
procedure, as far as I know, but the Wilcoxon signed rank test is pretty standard.

The wilcox.test function implements that procedure. Buried in the output is the 95%
confidence interval, which is approximately (0.424, 0.892) in this case:

> wilcox.test(x, conf.int=TRUE)
Wilcoxon signed rank test

data: x

V = 465, p-value = 1.863e-09

alternative hypothesis: true location is not equal to 0
95 percent confidence interval:

0.4235421 0.8922106
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sample estimates:
(pseudo)median
0.6249297

You can change the confidence level by setting conf.level, such as conf.level=0.99 or
other such values.

The output also includes something called the pseudomedian, which is defined on the
help page. Don’t assume it equals the median; they are different:

> median(x)
[1] 0.547129

See Also

The bootstrap procedure is also useful for estimating the median’s confidence interval;
see Recipes 8.5 and 13.8.

9.11 Testing a Sample Proportion

Problem

You have a sample of values from a population consisting of successes and failures.
You believe the true proportion of successes is p, and you want to test that hypothesis
using the sample data.

Solution

Use the prop.test function. Suppose the sample size is # and the sample contains x
successes:

> prop.test(x, n, p)

The output includes a p-value. Conventionally, a p-value of less than 0.05 indicates
that the true proportion is unlikely to be p whereas a p-value exceeding 0.05 fails to
provide such evidence.

Discussion

Suppose you encounter some loudmouthed fan of the Chicago Cubs early in the base-
ball season. The Cubs have played 20 games and won 11 of them, or 55% of their
games. Based on that evidence, the fan is “very confident” that the Cubs will win more
than half of their games this year. Should he be that confident?

The prop.test function can evaluate the fan’s logic. Here, the number of observations
is n = 20, the number of successes is x = 11, and p is the true probability of winning a
game. We want to know whether it is reasonable to conclude, based on the data, that
p > 0.5. Normally, prop.test would check for p # 0.05 but we can check for p > 0.5
instead by setting alternative="greater":
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> prop.test(11, 20, 0.5, alternative="greater")
1-sample proportions test with continuity correction

data: 11 out of 20, null probability 0.5
X-squared = 0.05, df = 1, p-value = 0.4115
alternative hypothesis: true p is greater than 0.5
95 percent confidence interval:

0.3496150 1.0000000

sample estimates:

p
0.55
The prop.test output shows a large p-value, 0.4115, so we cannot reject the null hy-
pothesis; that is, we cannot reasonably conclude that p is greater than 1/2. The Cubs
fan is being overly confident based on too little data. No surprise there.

9.12 Forming a Confidence Interval for a Proportion

Problem

You have a sample of values from a population consisting of successes and failures.
Based on the sample data, you want to form a confidence interval for the population’s
proportion of successes.

Solution

Use the prop.test function. Suppose the sample size is n and the sample contains x
successes:

> prop.test(n, x)

The function output includes the confidence interval for p.

Discussion

I subscribe to a stock market newsletter that is well written for the most part but in-
cludes a section purporting to identify stocks that are likely to rise. It does this by
looking for a certain pattern in the stock price. It recently reported, for example, that
a certain stock was following the pattern. It also reported that the stock rose six times
after the last nine times that pattern occurred. The writers concluded that the proba-
bility of the stock rising again was therefore 6/9 or 66.7%.

Using prop.test, we can obtain the confidence interval for the true proportion of times
the stock rises after the pattern. Here, the number of observations is n = 9 and the
number of successes is x = 6. The output shows a confidence interval of (0.309, 0.910)
at the 95% confidence level:
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> prop.test(6, 9)
1-sample proportions test with continuity correction

data: 6 out of 9, null probability 0.5

X-squared = 0.4444, df = 1, p-value = 0.505
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval:

0.3091761 0.9095817

sample estimates:

p
0.6666667

The writers are pretty foolish to say the probability of rising is 66.7%. They could be
leading their readers into a very bad bet.

By default, prop.test calculates a confidence interval at the 95% confidence level. Use
the conf.level argument for other confidence levels:

> prop.test(n, x, p, conf.level=0.99) # 99% confidence level

See Also
See Recipe 9.11.

9.13 Testing for Normality

Problem

You want a statistical test to determine whether your data sample is from a normally
distributed population.

Solution

Use the shapiro.test function:

> shapiro.test(x)
The output includes a p-value. Conventionally, p < 0.05 indicates that the population
is likely not normally distributed whereas p > 0.05 provides no such evidence.
Discussion

This example reports a p-value of 0.4151 for x:

> shapiro.test(x)
Shapiro-Wilk normality test

data: x
W = 0.9651, p-value = 0.4151
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The large p-value suggests the underlying population could be normally distributed.
The next example reports a small p-value for y, so it is unlikely that this sample came
from a normal population:

> shapiro.test(y)
Shapiro-Wilk normality test

data: y
W = 0.9503, p-value = 0.03520

I have highlighted the Shapiro—Wilk test because it is a standard R function. You can
also install the package nortest, which is dedicated entirely to tests for normality. This
package includes:

* Anderson—Darling test (ad.test)

e (Cramer—von Mises test (cvm.test)

e Lilliefors test (1illie.test)

* Pearson chi-squared test for the composite hypothesis of normality (pearson.test)

* Shapiro—Francia test (sf.test)
The problem with all these tests is their null hypothesis: they all assume that the pop-
ulation is normally distributed until proven otherwise. As a result, the population must
be decidedly nonnormal before the test reports a small p-value and you can reject that

null hypothesis. That makes the tests quite conservative, tending to err on the side of
normality.

Instead of depending solely upon a statistical test, I suggest also using histograms
(Recipe 10.18) and quantile-quantile plots (Recipe 10.21) to evaluate the normality of
any data. Are the tails too fat? Is the peak to peaked? Your judgment is likely better
than a single statistical test.

See Also

See Recipe 3.9 for how to install the nortest package.

9.14 Testing for Runs

Problem

Your data is a sequence of binary values: yes—no, 0—1, true—false, or other two-valued
data. You want to know: Is the sequence random?
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Solution

The tseries package contains the runs.test function, which checks a sequence for
randomness. The sequence should be a factor with two levels:

> library(tseries)
> runs.test(as.factor(s))

The runs.test function reports a p-value. Conventionally, a p-value of less than 0.05
indicates that the sequence is likely not random whereas a p-value exceeding 0.05 pro-
vides no such evidence.

Discussion

A run is a subsequence composed of identical values, such as all 1s or all 0s. A random
sequence should be properly jumbled up, without too many runs. Similarly, it shouldn’t
contain too few runs, either. A sequence of perfectly alternating values (0, 1, 0, 1, 0,
1, ...) contains no runs, but would you say that it’s random?

The runs.test function checks the number of runs in your sequence. If there are too
many or too few, it reports a small p-value.

This first example generates a random sequence of Os and 1s and then tests the sequence
for runs. Not surprisingly, runs.test reports a large p-value, indicating the sequence is
likely random:

> library(tseries)
> s <- sample(c(0,1), 100, replace=T)
> runs.test(as.factor(s))

Runs Test

data: as.factor(s)
Standard Normal = 0.2175, p-value = 0.8279
alternative hypothesis: two.sided

This next sequence, however, consists of three runs and so the reported p-value is quite
low:

> s <- ¢(0,0,0,0,1,1,1,1,0,0,0,0)
> runs.test(as.factor(s))

Runs Test
data: as.factor(s)

Standard Normal = -2.2997, p-value = 0.02147
alternative hypothesis: two.sided

See Also
See Recipes 5.4 and 8.6.
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9.15 Comparing the Means of Two Samples

Problem

You have one sample each from two populations. You want to know if the two popu-
lations could have the same mean.

Solution

Perform a ¢ test by calling the t.test function:
> t.test(x, y)

By default, t.test assumes that your data are not paired. If the observations are paired
(i.e., if each x; is paired with one y;), then specify paired=TRUE:

> t.test(x, y, paired=TRUE)

In either case, t.test will compute a p-value. Conventionally, if p < 0.05 then the means
are likely different whereas p > 0.05 provides no such evidence:

* If either sample size is small, then the populations must be normally distributed.
Here, “small” means fewer than 20 data points.

¢ If the two populations have the same variance, specify var.equal=TRUE to obtain a
less conservative test.

Discussion

[ often use the ¢ test to get a quick sense of the difference between two population
means. It requires that the samples be large enough (both samples have 20 or more
observations) or that the underlying populations be normally distributed. I don’t take
the “normally distributed” part too literally. Being bell-shaped should be good enough.

A key distinction here is whether or not your data contains paired observations, since
the results may differ in the two cases. Suppose we want to know if coffee in the morning
improves scores on SAT tests. We could run the experiment two ways:

1. Randomly select one group of people. Give them the SAT test twice, once with
morning coffee and once without morning coffee. For each person, we will have
two SAT scores. These are paired observations.

2. Randomly select two groups of people. One group has a cup of morning coffee and
takes the SAT test. The other group just takes the test. We have a score for each
person, but the scores are not paired in any way.

Statistically, these experiments are quite different. In experiment 1, there are two
observations for each person (caffeinated and decaf) and they are not statistically in-
dependent. In experiment 2, the data are independent.
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If you have paired observations (experiment 1) and erroneously analyze them as un-
paired observations (experiment 2), then you could get this result with a p-value of
0.9867:

> t.test(x,y)
Welch Two Sample t-test

data: x and y
t = -0.0166, df = 198, p-value = 0.9867
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-30.56737 30.05605
sample estimates:
mean of x mean of y
501.2008 501.4565

The large p-value forces you to conclude there is no difference between the groups.
Contrast that result with the one that follows from analyzing the same data but correctly
identifying it as paired:

> t.test(x, y, paired=TRUE)

Paired t-test

data: x and y
t = -2.3636, df = 99, p-value = 0.02005
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

-0.4702824 -0.0410375
sample estimates:
mean of the differences

-0.2556599

The p-value plummets to 0.02005, and we reach the exactly opposite conclusion.

See Also

If the populations are not normally distributed (bell-shaped) and either sample is small,
consider using the Wilcoxon—Mann—Whitney test described in Recipe 9.16.

9.16 Comparing the Locations of Two Samples
Nonparametrically

Problem

You have samples from two populations. You don’t know the distribution of the pop-
ulations, but you know they have similar shapes. You want to know: Is one population
shifted to the left or right compared with the other?

9.16 Comparing the Locations of Two Samples Nonparametrically | 213

www.it-ebooks.info


http://www.it-ebooks.info

Solution

You can use a nonparametric test, the Wilcoxon—-Mann—Whitney test, which is im-
plemented by the wilcox.test function. For paired observations (every x; is paired with
v;), set paired=TRUE:

> wilcox.test(x, y, paired=TRUE)

For unpaired observations, let paired default to FALSE:

> wilcox.test(x, y)

The test output includes a p-value. Conventionally, a p-value of less than 0.05 indicates
that the second population is likely shifted left or right with respect to the first popu-
lation whereas a p-value exceeding 0.05 provides no such evidence.

Discussion

When we stop making assumptions regarding the distributions of populations, we enter
the world of nonparametric statistics. The Wilcoxon—Mann—Whitney test is nonpara-
metric and so can be applied to more datasets than the t test, which requires that the
data be normally distributed (for small samples). This test’s only assumption is that
the two populations have the same shape.

In this recipe, we are asking: Is the second population shifted left or right with respect
to the first? This is similar to asking whether the average of the second population is
smaller or larger than the first. However, the Wilcoxon—-Mann—Whitney test answers
a different question: it tells us whether the central locations of the two populations are
significantly different or, equivalently, whether their relative frequencies are different.

Suppose we randomly select a group of employees and ask each one to complete the
same task under two different circumstances: under favorable conditions and under
unfavorable conditions, such as a noisy environment. We measure their completion
times under both conditions, so we have two measurements for each employee. We
want to know if the two times are significantly different, but we can’t assume they are
normally distributed.

The data are paired, so we must set paired=TRUE:

> wilcox.test(fav, unfav, paired=TRUE)
Wilcoxon signed rank test with continuity correction

data: fav and unfav
V =0, p-value < 2.2e-16
alternative hypothesis: true location shift is not equal to 0

The p-value is essentially zero. Statistically speaking, we reject the assumption that the
completion times were equal. Practically speaking, it’s reasonable to conclude that the
times were different.
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In this example, setting paired=TRUE is critical. Treating the data as unpaired would be
wrong because the observations are not independent; and this, in turn, would produce
bogus results. Running the example with paired=FALSE produces a p-value of 0.2298,
which leads to the wrong conclusion.

See Also

See Recipe 9.15 for the parametric test.

9.17 Testing a Correlation for Significance

Problem

You calculated the correlation between two variables, but you don’t know if the cor-
relation is statistically significant.

Solution

The cor.test function can calculate both the p-value and the confidence interval of the
correlation. If the variables came from normally distributed populations then use the
default measure of correlation, which is the Pearson method:

> cor.test(x, y)

For nonnormal populations, use the Spearman method instead:

> cor.test(x, y, method="Spearman")

The function returns several values, including the p-value from the test of significance.
Conventionally, p < 0.05 indicates that the correlation is likely significant whereas p >
0.05 indicates it is not.

Discussion

In my experience, people often fail to check a correlation for significance. In fact, many
people are unaware that a correlation can be insignificant. They jam their data into a
computer, calculate the correlation, and blindly believe the result. However, they
should ask themselves: Was there enough data? Is the magnitude of the correlation
large enough? Fortunately, the cor.test function answers those questions.

Suppose we have two vectors, x and y, with values from normal populations. We might
be very pleased that their correlation is greater than 0.83:

> cor(x, y)
[1] 0.8352458

But that is naive. If we run cor.test, it reports a relatively large p-value of 0.1648:
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> cor.test(x, y)
Pearson's product-moment correlation

data: x and y
t = 2.1481, df = 2, p-value = 0.1648
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.6379590 0.9964437
sample estimates:
cor
0.8352458

The p-value is above the conventional threshold of 0.03, so we conclude that the cor-
relation is unlikely to be significant.

You can also check the correlation by using the confidence interval. In this example,
the confidence interval is (-0.638,0.996). The interval contains zero and so it is possible
that the correlation is zero, in which case there would be no correlation. Again, you
could not be confident that the reported correlation is significant.

The cor.test output also includes the point estimate reported by cor (at the bottom,
labeled “sample estimates”), saving you the additional step of running cor.

By default, cor.test calculates the Pearson correlation, which assumes that the under-
lying populations are normally distributed. The Spearman method makes no such as-
sumption because it is nonparametric. Use method="Spearman" when working with
nonnormal data.

See Also

See Recipe 2.6 for calculating simple correlations.

9.18 Testing Groups for Equal Proportions

Problem

You have samples from two or more groups. The group’s elements are binary-valued:
either success or failure. You want to know if the groups have equal proportions of
successes.

Solution

Use the prop.test function with two vector arguments:
> ns <- c(nsy, NSy, ..., nsy)
> nt <- c(nty, nty, ..., nty)

> prop.test(ns, nt)
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These are parallel vectors. The first vector, ns, gives the number of successes in each
group. The second vector, nt, gives the size of the corresponding group (often called
the number of trials).

The output includes a p-value. Conventionally, a p-value of less than 0.05 indicates
that it is likely the groups’ proportions are different whereas a p-value exceeding 0.05
provides no such evidence.

Discussion

In Recipe 9.11 we tested a proportion based on one sample. Here, we have samples
from several groups and want to compare the proportions in the underlying groups.

[ recently taught statistics to 38 students and awarded a grade of A to 14 of them. A
colleague taught the same class to 40 students and awarded an A to only 10. I wanted
to know: Am I fostering grade inflation by awarding significantly more A grades than

she did?
[ used prop.test. “Success” means awarding an A, so the vector of successes contains
two elements: the number awarded by me and the number awarded by my colleague:

> successes <- c¢(14,10)

The number of trials is the number of students in the corresponding class:

> trials <- c(38,40)

The prop.test output yields a p-value of 0.3749:

> prop.test(successes, trials)
2-sample test for equality of proportions with continuity correction

data: successes out of trials
X-squared = 0.7872, df = 1, p-value = 0.3749
alternative hypothesis: two.sided
95 percent confidence interval:
-0.1110245 0.3478666
sample estimates:
prop 1 prop 2
0.3684211 0.2500000

The relatively large p-value means that we cannot reject the null hypothesis: the evi-
dence does not suggest any difference between my grading and hers.

See Also
See Recipe 9.11.
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9.19 Performing Pairwise Comparisons Between Group Means

Problem

You have several samples, and you want to perform a pairwise comparison between
the sample means. That is, you want to compare the mean of every sample against the
mean of every other sample.

Solution

Place all data into one vector and create a parallel factor to identify the groups. Use
pairwise.t.test to perform the pairwise comparison of means:

> pairwise.t.test(x,f) # x contains the data, f is the grouping factor

The output contains a table of p-values, one for each pair of groups. Conventionally,
if p < 0.05 then the two groups likely have different means whereas p > 0.05 provides
no such evidence.

Discussion

This is more complicated than Recipe 9.15, where we compared the means of two
samples. Here we have several samples and want to compare the mean of every sample
against the mean of every other sample.

Statistically speaking, pairwise comparisons are tricky. It is not the same as simply
performing a t test on every possible pair. The p-values must be adjusted, for otherwise
you will get an overly optimistic result. The help pages for pairwise.t.test and
p.adjust describe the adjustment algorithms available in R. Anyone doing serious pair-
wise comparisons is urged to review the help pages and consult a good textbook on the
subject.

Suppose we are using the data of Recipe 5.5, where we combined data for freshmen,
sophomores, and juniorsinto a data frame called comb. The data frame has two columns:
the data in a column called values, and the grouping factor in a column called ind. We
can use pairwise.t.test to perform pairwise comparisons between the groups:

> pairwise.t.test(comb$values, comb$ind)
Pairwise comparisons using t tests with pooled SD
data: comb$values and comb$ind
fresh jrs
jrs 0.0043 -
soph 0.0193 0.1621

P value adjustment method: holm
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Notice the table of p-values. The comparisons of juniors versus freshmen and of soph-
omores versus freshmen produced small p-values: 0.0043 and 0.0193, respectively. We
can conclude there are significant differences between those groups. However, the
comparison of sophomores versus juniors produced a (relatively) large p-value of
0.1621, so they are not significantly different.

See Also
See Recipes 5.5 and 9.15.

9.20 Testing Two Samples for the Same Distribution

Problem

You have two samples, and you are wondering: Did they come from the same
distribution?

Solution

The Kolmogorov—Smirnov test compares two samples and tests them for being drawn
from the same distribution. The ks.test function implements that test:

> ks.test(x, y)

The output includes a p-value. Conventionally, a p-value of less than 0.05 indicates
that the two samples (x and y) were drawn from different distributions whereas a
p-value exceeding 0.05 provides no such evidence.

Discussion

The Kolmogorov—Smirnov test is wonderful for two reasons. First, it is a nonparametric
test and so you needn’t make any assumptions regarding the underlying distributions:
it works for all distributions. Second, it checks the location, dispersion, and shape of
the populations, based on the samples. If these characteristics disagree then the test
will detect that, allowing us to conclude that the underlying distributions are different.

Suppose we suspect that the vectors x and y come from differing distributions. Here,
ks.test reports a p-value of 0.01297:

> ks.test(x, y)
Two-sample Kolmogorov-Smirnov test
data: x and y

D = 0.3333, p-value = 0.01297
alternative hypothesis: two-sided
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From the small p-value we can conclude that the samples are from different distribu-
tions. However, when we test x against another sample, z, the p-value is much larger
(0.8245); this suggests that x and z could have the same underlying distribution:

> ks.test(x, z)
Two-sample Kolmogorov-Smirnov test
data: x and z

D = 0.1333, p-value = 0.8245
alternative hypothesis: two-sided
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CHAPTER 10
Graphics

Introduction

Graphics is a great strength of R. The graphics package is part of the standard distri-
bution and contains many useful functions for creating a variety of graphic displays.
This chapter focuses on those functions, although it occasionally suggests other pack-
ages. In this chapter’s See Also sections I mention functions in other packages that do
the same job in a different way. I suggest that you explore those alternatives if you are
dissatisfied with the basic function.

Graphics is a vast subject, and I can only scratch the surface here. If you want to delve
deeper, I recommend R Graphics by Paul Murrell (Chapman & Hall, 2006). That book
discusses the paradigms behind R graphics, explains how to use the graphics functions,
and contains numerous examples—including the code to recreate them. Some of the
examples are pretty amazing.

The lllustrations
The graphs in this chapter are mostly plain and unadorned. I did that intentionally.
When you call the plot function, as in:
> plot(x)
you get a plain, graphical representation of x. You could adorn the graph with colors,

a title, labels, a legend, text, and so forth, but then the call to plot becomes more and
more crowded, obscuring the basic intention:

> plot(x, main="Forecast Results", xlab="Month", ylab="Production",
+ col=c("red", "black", "green"))

I want to keep the recipes clean, so I emphasize the basic plot and then show later (as
in Recipe 10.2) how to add adornments.
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Notes on Graphics Functions

[t is important to understand the distinction between high-level and low-level graphics
functions. A high-level graphics function starts a new graph. It initializes the graphics
window (creating it if necessary); sets the scale; maybe draws some adornments, such
as a title and labels; and renders the graphic. Examples include:

plot
Generic plotting function
boxplot
Create a box plot
hist
Create a histogram
qgnorm
Create a quantile-quantile (Q-Q) plot
curve
Graph a function

A low-level graphics function cannot start a new graph. Rather, it adds something to an
existing graph: points, lines, text, adornments, and so forth. Examples include:

points
Add points

lines
Add lines

abline
Add a straight line

segments
Add line segments

polygon

Add a closed polygon
text

Add text

You must call a high-level graphics routine before calling a low-level graphics routine.
The low-level routine needs to have the graph initialized; otherwise, you get an error

like this:

> abline(a=0, b=1)
Error in int_abline(a = a, b = b, h = h, v = v, untf = untf, ...) :
plot.new has not been called yet
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The Generic plot Function

In this chapter, we come face to face with polymorphism in R. A polymorphic func-
tion or generic function is one whose behavior changes depending on the type of
argument. The plot function is polymorphic, so plot(x) produces different results de-
pending on whether x is a vector, a factor, a data frame, a linear regression model, a
table, or whatever.

Asyouread the recipes, you’ll see plot used over and over. Each time it’s used, carefully
note the type of arguments. That will help you understand and remember why the
function behaved as it did.

Graphics in Other Packages

R is highly programmable, and many people have extended its graphics machinery with
additional features. Quite often, packages include specialized functions for plotting
their results and objects. The zoo package, for example, implements a time series object.
If you create a zoo object z and call plot(z), then the zoo package does the plotting; it
creates a graphic that is customized for displaying a time series.

There are even entire packages devoted to extending R with new graphics paradigms.
T