
Extending lsmeans

Russell V. Lenth

September 23, 2014

1 Introduction

Suppose you want to use lsmeans for some type of model that it doesn’t (yet) support. Or, suppose
you have developed a new package with a fancy model-fitting function, and you’d like it to work
with lsmeans. What can you do? Well, there is hope because lsmeans is designed to be extended.

The first thing to do is to look at the help page for extending the package:

R> help("extending-lsmeans", package="lsmeans")

It gives details about the fact that you need to write two S3 methods, recover.data and lsm.basis,
for the class of object that your model-fitting function returns. The recover.data method is
needed to recreate the dataset so that the reference grid can be identified. The lsm.basis method
then determines the linear functions needed to evaluate each point in the reference grid and to
obtain associated information—such as the variance-covariance matrix—needed to do estimation
and testing.

This vignette presents an example where suitable methods are developed, and discusses a few
issues that arise.

2 Data example

The MASS package contains various functions that do robust or outlier-resistant model fitting. We
will cobble together some lsmeans support for these. But first, let’s create a suitable dataset (a
simulated two-factor experiment) for testing.1

R> fake = expand.grid(rep = 1:5, A = c("a1","a2"), B = c("b1","b2","b3"))

R> fake$y = c(11.46,12.93,11.87,11.01,11.92,17.80,13.41,13.96,14.27,15.82,

23.14,23.75,-2.09,28.43,23.01,24.11,25.51,24.11,23.95,30.37,

17.75,18.28,17.82,18.52,16.33,20.58,20.55,20.77,21.21,20.10)

The y values were generated using predetermined means and Cauchy-distributed errors. There are
some serious outliers in these data.

3 Supporting rlm

The MASS package provides an rlm function that fits robust-regression models using M estimation.
We’ll fit a model using the default settings for all tuning parameters:

1I unapologetically use = as the assignment operator. It is good enough for C and Java, and supported by R.

1

R> library(MASS)

R> fake.rlm = rlm(y ~ A * B, data = fake)

R> library(lsmeans)

R> lsmeans(fake.rlm, ~B | A)

A = a1:

B lsmean SE df asymp.LCL asymp.UCL

b1 11.83800 0.4774474 NA 10.90211 12.77389

b2 23.30000 0.4774474 NA 22.36411 24.23589

b3 17.80078 0.4774474 NA 16.86489 18.73667

A = a2:

B lsmean SE df asymp.LCL asymp.UCL

b1 14.68344 0.4774474 NA 13.74755 15.61933

b2 24.71164 0.4774474 NA 23.77574 25.64753

b3 20.64200 0.4774474 NA 19.70611 21.57789

Confidence level used: 0.95

The first lesson to learn about extending lsmeans is that sometimes, it already works! It works here
because rlm objects inherit from lm, which is supported by the lsmeans package, and rlm objects
aren’t enough different to create any problems.

4 Supporting lqs objects

The MASS resistant-regression functions lqs, lmsreg, and ltsreg are another story, however. They
create lqs objects that are not extensions of any other class, and have other issues, including not
even having a vcov method. So for these, we really do need to write new methods for lqs objects.
First, let’s fit a model.

R> fake.lts = ltsreg(y ~ A * B, data = fake)

4.1 The recover.data method

It is usually an easy matter to write a recover.data method. Look at the one for lm objects:

R> lsmeans:::recover.data.lm

function (object, ...)

{

fcall = object$call

recover.data(fcall, delete.response(terms(object)), object$na.action,

...)

}

<environment: namespace:lsmeans>

Note that all it does is obtain the call component and call the method for class "call", with
additional arguments for its terms component and na.action. It happens that we can access these
attributes in exactly the same way as for lm objects; so, . . .

2

R> recover.data.lqs = lsmeans:::recover.data.lm

The trickier part is testing it, as it isn’t clear that there is a required data argument.

R> rec.fake = recover.data(fake.lts, data = NULL)

R> head(rec.fake)

A B

1 a1 b1

2 a1 b1

3 a1 b1

4 a1 b1

5 a1 b1

6 a2 b1

Our recovered data excludes the response variable y (owing to the delete.response call), and this
is fine.

By the way, the data argument is handed to recover.data if it is specified in the ref.grid or
lsmeans call. It is needed to cover a desperate situation that occurs with certain kinds of models
that are fitted by iteratively modifying the data. In those cases, the only way to recover the data
is to for the user to give it explicitly, and recover.data just adds a few needed attributes to it.

4.2 The lsm.basis method

The lsm.basis method has four required arguments:

R> args(lsmeans:::lsm.basis.lm)

function (object, trms, xlev, grid, ...)

NULL

These are, respectively, the model object, its terms component (at least for the right-hand side of
the model), a list of levels of the factors, and the grid of predictor combinations that specify the
reference grid.

The function must obtain six things and return them in a named list. They are the matrix X

of linear functions for each point in the reference grid, the regression coefficients bhat; the variance-
covariance matrix V; a matrix nbasis for non-estimable functions; a function dffun(k,dfargs) for
computing degrees of freedom for the linear function sum(k*bhat); and a list dfargs of arguments
to pass to dffun.

To write your own lsm.basis function, examining some of the existing methods can help; but
the best resource is the predict method for the object in question, looking carefully to see what
it does to predict values for a new set of predictors (e.g., newdata in predict.lm). Following this
advice, let’s take a look at it:

R> MASS:::predict.lqs

function (object, newdata, na.action = na.pass, ...)

{

if (missing(newdata))

return(fitted(object))

3

Terms <- delete.response(terms(object))

m <- model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)

if (!is.null(cl <- attr(Terms, "dataClasses")))

.checkMFClasses(cl, m)

X <- model.matrix(Terms, m, contrasts = object$contrasts)

drop(X %*% object$coefficients)

}

<bytecode: 0x000000000c1f2220>

<environment: namespace:MASS>

Based on this, here is a listing of an lsm.basis method for lqs objects:

1 R> lsm.basis.lqs = function(object, trms, xlev, grid, ...) {

2 m = model.frame(trms, grid, na.action = na.pass, xlev = xlev)

3 X = model.matrix(trms, m, contrasts.arg = object$contrasts)

4 bhat = coef(object)

5 Xmat = model.matrix(trms, data=object$model)

6 V = rev(object$scale)[1]^2 * solve(t(Xmat) %*% Xmat)

7 nbasis = matrix(NA)

8 dfargs = list(df = nrow(Xmat) - ncol(Xmat))

9 dffun = function(k, dfargs) dfargs$df

10 list(X=X, bhat=bhat, nbasis=nbasis, V=V, dffun=dffun, dfargs=dfargs)

11 }

Before explaining it, let’s verify that it works:

R> lsmeans(fake.lts, ~ B | A)

A = a1:

B lsmean SE df lower.CL upper.CL

b1 11.87278 0.2284451 24 11.40129 12.34427

b2 23.09278 0.2284451 24 22.62129 23.56427

b3 17.77278 0.2284451 24 17.30129 18.24427

A = a2:

B lsmean SE df lower.CL upper.CL

b1 13.91278 0.2284451 24 13.44129 14.38427

b2 24.06278 0.2284451 24 23.59129 24.53427

b3 20.50278 0.2284451 24 20.03129 20.97427

Confidence level used: 0.95

Hooray! Note the results are comparable to those we had for fake.rlm, albeit the standard errors
are quite a bit smaller.

4.3 Dissecting lsm.basis.lqs

Let’s go through the listing of this method, by line numbers.

4

2–3: Construct the linear functions, X. This is a pretty standard standard two-step process: First
obtain a model frame, m, for the grid of predictors, then pass it as data to model.data to
create the associated design matrix. As promised, this code is essentially identical to what
you find in predict.lqs.

4: Obtain the coefficients, bhat. Most model objects have a coef method.

5–6: Obtain the covariance matrix, V, of bhat. In many models, this can be obtained using the
object’s vcov method. But not in this case. Instead, I cobbled one together using what it
would be for ordinary regression: σ̂2(X′X)−1, where X is the design matrix for the whole
dataset (not the reference grid). Here, σ̂ is obtained using the last element of the scale

element of the object (depending on the method, there are one or two scale estimates).
This probably under-estimates the variances and distorts the covariances, because robust
estimators have some efficiency loss.

7: Compute the basis for non-estimable functions. This applies only when there is a possibility
of rank deficiency in the model, and lqs methods cannot handle that. All linear functions
are estimable, and we signal that by setting nbasis equal to a 1× 1 matrix of NA. If rank
deficiency were possible, lsmeans provides a fairly pain-free way to handle this—I would have
coded:

R> nbasis = nonest.basis(Xmat)

There is a subtlety you need to know, though. Suppose the model is rank-deficient, so that
the design matrix X has p columns but rank r < p. In that case, bhat should be of length
p (not r), and there should be p − r elements equal to NA, corresponding to columns of X
that were excluded from the fit. Also, X should have all p columns. In other words, do not
throw-out columns of X or their corresponding elements of bhat, as they are essential for
assessing estimability. V should be r× r, however: the covariance matrix for the non-ecxluded
predictors.

8-9: Obtain dffun and dfargs. This is a little awkward because it is designed to allow support for
mixed models, where approximate methods may be used to obtain degrees of freedom. The
function dffun is expected to have two arguments: k, the vector of coefficients of bhat, and
dfargs, a list containing any additional arguments. In this case (and in many other models),
the degrees of freedom are the same regardless of k. We put the required degrees of freedom
in dfargs and write dffun so that it simply returns that value.

10: Return these results in a named list.

4.4 The “honest” version

Because of the inadequacies mentioned above for estimating the covariance matrix, then—lacking
any better estimate—I think it’s probably better to set it and the degrees of freedom to NAs. We
will still be able to get the LS means and contrasts thereof, but no standard errors or tests. With
that in mind, here’s a replacement version:

R> lsm.basis.lqs = function(object, trms, xlev, grid, ...) {

m = model.frame(trms, grid, na.action = na.pass, xlev = xlev)

X = model.matrix(trms, m, contrasts.arg = object$contrasts)

bhat = coef(object)

5

V = diag(rep(NA, length(bhat)))

nbasis = matrix(NA)

dffun = function(k, dfargs) NA

list(X=X, bhat=bhat, nbasis=nbasis, V=V, dffun=dffun, dfargs=list())

}

And here is a test:

R> lsmeans(fake.lts, pairwise ~ B)

$lsmeans

B lsmean SE df asymp.LCL asymp.UCL

b1 12.89278 NA NA NA NA

b2 23.57778 NA NA NA NA

b3 19.13778 NA NA NA NA

Results are averaged over the levels of: A

Confidence level used: 0.95

$contrasts

contrast estimate SE df z.ratio p.value

b1 - b2 -10.685 NA NA NA NA

b1 - b3 -6.245 NA NA NA NA

b2 - b3 4.440 NA NA NA NA

Results are averaged over the levels of: A

P value adjustment: tukey method for a family of 3 means

P values are asymptotic

5 Conclusions

It is relatively simple to write appropriate methods that work with lsmeans for model objects it
does not support. I hope this vignette is helpful for understanding how. Furthermore, if you are
the developer of a package that fits linear models, I encourage you to include recover.data and
lsm.basis methods for those classes of objects, and to remember to export them in your NAMESPACE
file as follows:

S3method(myobject, recover.data)

S3method(myobject, lsm.basis)

6

	Introduction
	Data example
	Supporting rlm
	Supporting lqs objects
	The recover.data method
	The lsm.basis method
	Dissecting lsm.basis.lqs
	The ``honest'' version

	Conclusions

