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ABSTRACT

Molecular chaperones, including the heat-shock proteins (Hsps), are a ubiquitous
feature of cells in which these proteins cope with stress-induced denaturation
of other proteins. Hsps have received the most attention in model organisms
undergoing experimental stress in the laboratory, and the function of Hsps at
the molecular and cellular level is becoming well understood in this context. A
complementary focus is now emerging on the Hsps of both model and nonmodel
organisms undergoing stress in nature, on the roles of Hsps in the stress physiology
of whole multicellular eukaryotes and the tissues and organs they comprise, and
on the ecological and evolutionary correlates of variation in Hsps and the genes
that encode them. This focus discloses that (a) expression of Hsps can occur
in nature, (b) all species havehspgenes but they vary in the patterns of their
expression, (c) Hsp expression can be correlated with resistance to stress, and
(d ) species’ thresholds for Hsp expression are correlated with levels of stress
that they naturally undergo. These conclusions are now well established and
may require little additional confirmation; many significant questions remain
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unanswered concerning both the mechanisms of Hsp-mediated stress tolerance
at the organismal level and the evolutionary mechanisms that have diversified the
hspgenes.

INTRODUCTION

Although heat-shock proteins (Hsps) first achieved notoriety as gene products
whose expression is induced by heat and other stresses (1, 2), discoveries of the
past decade have shifted the focus of research to understanding the roles of Hsps
as molecular chaperones (3–5). As a result, Hsps, their close relatives, their
molecular partners, and many newly discovered proteins are now known to play
diverse roles, even in unstressed cells, in successful folding, assembly, intracel-
lular localization, secretion, regulation, and degradation of other proteins (6);
failure of these activities is thought to underlie numerous and important human
diseases (7). Nonetheless, many of the questions of the past either remain
unanswered, awaiting the development of appropriate experimental tools, or
can now be revisited with new insights gleaned from the emerging understand-
ing of molecular chaperones. This review seeks to facilitate the examination or
re-examination of Hsps as responses to natural stress in diverse organisms in-
habiting environments outside the laboratory, the function of Hsps in tolerance
of natural stresses, and ecological and evolutionary variation in the heat-shock
system. The review sequentially considers (a) the principal implications of
laboratory-based studies for ecological and evolutionary research on Hsps, (b)
expression of Hsps in nature, (c) covariation of Hsp expression with environ-
mental and biological gradients of stress intensity, (d ) the consequences of Hsp
expression for fitness, and (e) evolutionary variation in Hsps and the genes
that encode them. The primary objective of this review is to redirect the focus
of evolutionary and ecological research on Hsps beyond the conclusions that
are now well-established and onto the many important questions that remain
unanswered.

STATE OF THE LITERATURE

Established Conclusions
The relevant literature on Hsps and molecular chaperones is huge, now com-
prising more than 12,000 references. Even a review of the relevant reviews
is difficult. For this reason, we begin by describing several well established
conclusions and cite a few of the many excellent recent reviews at diverse levels
of sophistication (4–6, 8–11).
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The genes encoding Hsps (hsps) are highly conserved and occur in every
species in which they have been sought. Many of these genes and their prod-
ucts can be assigned to families on the basis of sequence homology and typical
molecular weight (6):hsp110, hsp100, hsp90, hsp70, hsp60, hsp40, hsp10,
and smallhsp families. Gething (6) recognizes 7 additional families and 12
genes/proteins for which families have not yet been described. In eukaryotes,
many families comprise multiple members that differ in inducibility, intracel-
lular localization, and function.

Hsps function as molecular chaperones; i.e. they interact with other pro-
teins and, in so doing, minimize the probability that these other proteins will
interact inappropriately with one another. Hsps recognize and bind to other
proteins when these other proteins are in non-native conformations, whether
due to protein-denaturing stress or because the peptides they comprise have not
yet been fully synthesized, folded, assembled, or localized to an appropriate
cellular compartment. Binding and/or release of these other proteins is often
regulated by association with and/or hydrolysis of nucleotides. Typically, Hsps
function as oligomers, if not as complexes of several different chaperones,
co-chaperones, and/or nucleotide exchange factors. Interaction with chaper-
ones is variously responsible for (a) maintaining Hsps’ partner proteins in a
folding-competent, folded, or unfolded state; (b) organellar localization, im-
port, and/or export; (c) minimizing the aggregation of non-native proteins; and
(d ) targeting non-native or aggregated proteins for degradation and removal
from the cell. Presumably, the last two functions are most important in coping
with environmental stress.

Not all Hsps are stress-inducible, but those that are respond to a variety
of stresses, including extremes of temperature, cellular energy depletion, and
extreme concentrations of ions, other osmolytes, gases, and various toxic sub-
stances. Activation of various intracellular signaling pathways results in Hsp
expression. All known stresses, if sufficiently intense, induce Hsp expression.
Accordingly, Hsps are equally well termed stress proteins, and their expression
is termed the stress response. A common aspect of these inducing stresses
is that they result in proteins having non-native conformations (12), which is
consistent with the function of Hsps as molecular chaperones.

Implications of the Published Literature for Ecological
and Evolutionary Studies of Hsps
Space limitations necessitate that we choose among numerous equally valu-
able references in preparing this review. To present both the breadth and depth
of research relevant to the evolutionary and ecological physiology of the heat-
shock response, we have compiled a near-comprehensive bibliography of
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that literature, which is available electronically (13) on the World Wide Web
in the Supplemental Materials Section of the main Annual Reviews site
(http://www.AnnualReviews.org).

A first implication of this massive literature is that the Hsp field has long ago
concluded its exploratory phase. Showing that an as-yet-unexamined species
expresses Hsps in response to heat or other stresses no longer has any particular
novelty.

Second, much of the work on Hsps outside the laboratory or in nonmodel
organisms was undertaken before the molecular diversity of Hsps and their
function as molecular chaperones was obvious. In the interim, the experimental
tools for examining Hsps and the standards for such examinations have both
advanced considerably. As a result, much of the earlier work on evolutionary
and ecological physiology of Hsps regrettably either does not withstand current
scrutiny or contributes little to issues of current interest. Several issues are
obvious:

1. Many of the apparently singular Hsps of previous years, often detected
by one-dimensional electrophoresis and autoradiography, are now known
to represent entire families of Hsps, often with (a) discrete distributions
within the cell (e.g. cytoplasmic-nuclear, mitochondrial, chloroplast, or en-
doplasmic reticulum), (b) different degrees of inducibility (constitutively
expressed, constitutively expressed but increasing during or after stress, ex-
clusively inducible), (c) differing kinetics of induction and removal from
the cell, and (d ) differing tissue specificity. Representing this diversity as
a single Hsp or two Hsps (“constitutive” and “inducible”) through use of
nonspecific probes or lysates of whole organisms and organs can obscure
phenomena of great significance (e.g. compare Refs. 14 and 15 with 16).
This problem is sometimes remediable only with great difficulty. Often,
highly specific probes are available only for standard model organisms, par-
ticularly at the level of proteins, and great care must be taken in applying
these probes to non-standard organisms (17).

2. Inducible stress tolerance is increasingly understood to result from numer-
ous molecular mechanisms, of which Hsps are collectively only one. Other
mechanisms include synthesis of osmotic stress protectants such as polyols
and trehalose, modifications of the saturation of cell membrane lipids (home-
oviscous adaptation), compensatory expression of isozymes or allozymes of
significant enzymes, metabolic arrest, radical scavengers (superoxide dis-
mutase, glutathione system, cytochrome P450), and so on. Accordingly,
the unambiguous attribution of stress tolerance to Hsps in general or to
any specific Hsp requires more than correlative evidence (18–21). Increas-
ingly, proof resulting from genetic or direct experimental manipulation is
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becoming the standard for establishing the functional or evolutionary sig-
nificance of Hsps. Again, this rising standard is often met only with great
difficulty in ecological and evolutionary physiological studies, for many of
the techniques for genetic and experimental manipulation are not readily
applicable to the more ecologically and evolutionarily interesting species.

HSP-INDUCING STRESS IN NATURE
AND NATURAL INDUCTION OF HSPS

Depending on their geographic locale, organisms in nature risk exposure to
temperatures ranging from−100◦ to more than 100◦C, and comparable ex-
tremes of chemical and gas concentration, food and water availability, hydro-
static pressure, radiation, and toxic substances of human origin. Seemingly,
Hsp expression should be a common occurrence in nature. In reality, how-
ever, movement and/or other behaviors may often enable organisms to avoid
Hsp-inducing stress in nature by exploiting equable microhabitats in otherwise
stressful environments (22–24). Also, biochemical specializations other than
Hsps may stabilize many organisms (or particular stages of their life cycles) so
that environmental extremes are not particularly stressful.

Even equable environments can contain Hsp-inducing microhabitats, and
even mild stresses can induce Hsps when multiple stresses act in combina-
tion. For these reasons, we can assume neither the presence nor the absence
of Hsp expression in nature; for that matter, we still do not know in any com-
prehensive sense whether wild organisms routinely, occasionally, or seldom
express inducible Hsps. A growing body of evidence, however, establishes that
at least in some circumstances and taxa, Hsp induction is not solely a laboratory
phenomenon.

One caution in evaluating the subsequent account is that organisms in na-
ture seldom undergo only one stress at a time. For example, an insect larva
undergoing natural heat stress in a rotting fruit may simultaneously experience
intense ultraviolet radiation, desiccation, and diverse alcohols and aldehydes,
among other stresses. This situation differs from that in most laboratory exper-
imentation, which involves one or a few stresses and makes attribution of Hsp
expression to a particular stress in nature more complicated.

Aquatic Temperature Stress
Due to the physical characteristics of water, the aquatic environment can be ex-
tremely stressful to its inhabitants. In general, the high specific heat and thermal
conductivity of water ensure that the majority of aquatic organisms will have
body temperatures equivalent to that of their surroundings. Furthermore, the
relative thermal homogeneity of aquatic environments can frustrate behavioral
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avoidance of thermal extremes. Some aquatic ectotherms nonetheless inhabit
thermally equable habitats or waters with enough thermal diversity to enable
behavioral thermoregulation; our focus is on those species that do not.

In the aquatic environment, habitual exposure to Hsp-inducing thermal stress
may be most common in sessile organisms that occur in shallow, stagnant water
(e.g. ponds, tidepools, swamps, tidal flats) or in the intertidal zone. Corals, for
example, routinely undergo thermal stress that results in bleaching, during
which the corals’ endosymbionts die. Even modest increases in water tempera-
ture of 1-2◦C can bleach corals; these temperatures also induce Hsp expression
in several species (25, 26). Marine intertidal invertebrates undergo even larger
increases in body temperatures during tidal emersion (27–30). For example,
during aerial exposure intertidal mussels’ body temperatures exceed seawater
temperatures by more than 20◦C (31), resulting in Hsp expression (29). A similar
phenomenon occurs in encysted brine shrimp (Artemia) embryos (32, 33). Even
relatively mobile aquatic ectotherms such as fish may undergo heat shock in
nature (34, 35). For example, gobiid fishes of the genusGillichthyscan become
trapped in shallow water, which is heated by the sun. Summer-acclimatized
fish have higher levels of Hsp90 in brain tissue than do winter-acclimatized
fish (34). In addition, the threshold Hsp induction temperature for one species,
G. mirabilis, is significantly higher in summer than in winter. These data sug-
gest that seasonal variation in water temperature can alter the heat-shock re-
sponse. More exotic venues for aquatic thermal stress include thermal effluents
of power plants, hydrothermal vents, and thermal hot springs, in which temepra-
tures can exceed 100◦C (seeHsps of Archaea).

Terrestrial Temperature Stress
Unlike aquatic environments, terrestrial environments often offer diverse heat
sources and sinks and retreats that organisms can exploit to avoid thermal stress.
Thus, natural thermal stress and accompanying Hsp expression in terrestrial
environments typically involve limitations in mitigating thermal extremes by
movement and conflicts between thermoregulation and other needs. Salaman-
ders, for example, which ordinarily maintain cool temperatures in nature, can
inadvertently retreat beneath small sunlit rocks that become warm enough to
inducehsp70mRNA expression (36); by abandoning these rocks to find cooler
retreats they may risk immediate desiccation or even warmer temperatures.

The least equivocal case for routine exposure to Hsp-inducing temperature
stress is for plants, which cannot change location except as seeds or pollen and
can be limited in their ability to adjust heat exchange with the environment
(37). Thus, plants in nature can become extremely hot (38). By inference, the
entire range of plant heat-shock responses (8, 39) should manifest themselves in
nature. Indeed, a small number of case studies document natural Hsp expression
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(40–45), which can be greatest at times of day or in regions of an individual plant
at which temperatures are highest (46). Plant species can differ dramatically,
however, in both the magnitude and diversity of the particular Hsps that are
expressed during days with especially warm weather (41). Plants should also
be prone to natural cold stress (47), which ought to induce expression of Hsps
(48–51).

Not surprisingly, therefore, many of the cases of natural thermal stress in an-
imals on land involve animals that live inside or on plants (e.g. 52).Drosophila
larvae and pupae encounter temperatures exceeding 40◦C if the necrotic fruit
they infest is in the sun, and express Hsp70 in response (53, 54). Presumably,
other animals that cannot escape or offset intense solar heat loads will also
express Hsps in nature; this hypothesis awaits systematic study. A unique case
concerns desert ants,Cataglyphis, which voluntarily undergo body tempera-
tures of>50◦C, presumably to escape predators (55). The concentration of
Hsp70 family members increases in this species before it naturally encounters
high temperatures, as if in anticipation (56).

Terrestrial vertebrates are often especially effective in escaping heat stress,
but both they and invertebrates are occasionally hyperthermic during intense
physical activity, fever, or to conserve water. In birds and mammals, such hy-
perthermia activates HSF (the heat-shock transcription factor) and increases
the level of Hscs (Hsp cognates, constitutively-expressed Hsps) and Hsps
(57–59). Natural hypothermia of animals can be far more conspicuous than
natural heat stress, involving diapause, overwintering in exposed sites, hiberna-
tion, and sometimes outright freezing. Diverse insects express Hsps in response
to cold shock or during overwintering in diapause, although the identity of these
Hsps, their tissue specificity, and their developmental regulation vary greatly
(60–64). Some euthermic rodents express 70-kDa Hsps in response to cold
ambient temperatures, possibly in tandem with nonshivering thermogenesis
(65), and ground squirrels (Spermophilus) increase Hsp70 family members and
ubiquitin-protein conjugates during hibernation (66).

In summary, laboratory studies of the heat-shock response often have pro-
ceeded far in advance of fieldwork that establishes an ecological context for
their interpretation. Documentation of both natural thermal stress and Hsp ex-
pression in nature can provide this context, and a small but growing number of
field studies demonstrate that such documentation is feasible.

Inducing Stresses Other than Temperature
Virtually every nonthermal stress can induce Hsps (10, 67). Rarely, however,
are these nonthermal stresses ecologically relevant; the literature in this area
typically focuses on chemical stressors, and the corresponding data are es-
sentially pharmacological. Even when the stress in question is ecologically
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relevant, few studies of multicellular eukaryotes examine it in the field or in
intact tissues and organisms. Some exceptional work, however, concerns plants
and brine-shrimp (Artemia). The resurrection plant, a desert species, expresses
Hsps in vegetative tissues during water stress; this expression is thought to
contribute to desiccation tolerance (68). Similarly, rice seedlings express two
proteins in the Hsp90 family upon exposure to water stress and elevated salinity
(69). Embryos of the brine shrimp, one of the most hypoxia-tolerant metazoans,
contain large quantities of p26, a molecular chaperone hypothesized to stabilize
proteins during long bouts of anaerobic dormancy (seeDevelopment). Clearly,
additional evolutionary physiological research in this area is sorely needed.

A recurrent theme is that thermal stress and these alternative stressors often
result in different patterns of Hsp expression, indicating a diversity of regula-
tory mechanisms. Examples include variation in the expression of Hsp70 and
ubiquitin in theDrosophilacentral nervous system under anoxia (70), and in
protein expression during osmotic shock in isolated fish gill cells (71).

Bioindicators
Owing to its responsiveness to diverse forms of stress, the heat-shock response
has undergone widespread application in biomonitoring and environmental tox-
icology (72–75). In many cases, Hsps are especially useful biomarkers because
their induction is much more sensitive to stress than traditional indices such
as growth inhibition. The use of Hsps as biomarkers is most widespread in
aquatic toxicology. Most of the literature demonstrates elevated Hsp levels or
induction of Hsps under laboratory conditions and then proposes Hsps as a
potential indicator of pollutants or toxins in the environment. For example,
exposing freshwater sponges to pollutants extracted from river water elevates
Hsp70 levels, which increase still further when thermal stress is also imposed
(76). Additional examples of Hsp expression in aquatic toxicology concern ro-
tifers, (77), marine sponges (78), amphipods (79), polychaetes (80), mollusks
(81–84), and fish (85–87). Other applications purposefully deploy organisms
in potentially polluted aquatic systems as biosensors (88, 89).

In the terrestrial environment, where heavy metal contamination and pesticide
or herbicide accumulation can be critical problems, common soil organisms
such as invertebrates (90) are useful Hsp-biomonitors of toxicants. For example,
centipedes (Lithobius) collected from near a smelter had higher Hsp70 levels
than those collected from unpolluted areas (91). Potentially, combinations of
heavy metals can induce such distinctive patterns of Hsp expression in soil
nematodes that these patterns can become diagnostic fingerprints for specific
toxicants in soils (92).

Some aspects of the stress response, however, present problems for the use
of Hsps as biomarkers in environmental toxicology. Because so many different
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stresses induce Hsps, investigators may be unable to attribute changes in Hsp
expression to any particular environmental stress. Organisms in the field often
undergo multiple stresses simultaneously, the interaction of which can yield
significant Hsp expression even when no single monitored toxicant is at harmful
levels. Conversely, Hsps induced by another stress can enhance tolerance of
a toxicant whose presence is being monitored. Laboratory studies support the
difficulty of teasing apart environmental factors and attributing Hsp induction
to a single stressor. For example, freshwater sponges exhibit greater tolerance
of pollutants following a sublethal heat stress (76). Among the vertebrates,
diseased fish have elevated levels of Hsps in their tissues, and disease-related
expression may interfere with the use of Hsps as a biomarker (93). Thus, because
numerous factors can induce Hsp expression and stress tolerance, the utility of
Hsps as biomarkers of environmental toxins may be limited.

ENVIRONMENTAL AND BIOLOGICAL CORRELATES
OF THE HEAT-SHOCK RESPONSE
AND HEAT-SHOCK PROTEINS

Many investigators view correlations of organismal traits (e.g. Hsp expression)
and environmental or biological variables (e.g. level of environmental stress,
developmental stage, distinctive role in a parasitic or symbiotic relationship with
another species) as prima facie evidence of biological adaptation, and thus have
actively sought such correlations in terms of the heat-shock response. While
the probative value of such evidence in establishing adaptation has met with
skepticism (94), in this section we consider the evidence for such correlations,
whatever their meaning.

Variation in the Stress Response Along Environmental
Gradients of Stress
To understand how Hsps result in stress tolerance at the organismal level, many
investigators have characterized the stress response along gradients that occur
in nature. One central question is whether organisms from environments with
little stress have a different or reduced stress response compared with organisms
from environments with much stress. Little and much stress might correspond
to the center and edge of a species’ range, low versus high elevation, xeric and
hot versus mesic and cool climate, temperate versus tropical/polar latitude, low
versus high intertidal, and so on. In general, the resulting data support a corre-
lation among Hsp expression, stress tolerance, and gradients of environmental
stress. These gradients have received uneven attention, however, and their study
has yielded mixed results. Comparative studies across many degrees of latitude
have not produced the same results as studies of gradients on smaller scales
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(e.g. diurnal or microclimatic variation in stress). Currently, not a single study
has examined the stress response over the entire geographical distribution of
a species; thus, whether species at the extremes of their distributions have an
augmented heat-shock response is yet to be determined.

The majority of multi-species comparative studies focus on three aspects of
the stress response: the minimum (threshold) and maximum temperatures at
which Hsps are expressed and/or are present in cells, Hsp concentrations in cells,
and the diversity of the specific Hsps that are expressed. Except for the work on
threshold and maximum temperatures, much of this literature is a hodgepodge
of disconnected studies that are seldom comparable because of methodological
differences and permit few conclusions other than that species vary in the details
of their stress response. Whether this variation has environmental correlates is
uncertain. A rare and exemplary exception is the work of Bosch and colleagues
on species ofHydra (95, 96); below we discuss this and other similar work.

In general, the threshold temperature for Hsp induction is correlated with the
typical temperatures at which species live, with thermophilic species having
a higher threshold than psychrophilic species. For example, a relatively cold-
water, northern species of mussel (Mytilus trossulus) has a lower threshold for
Hsp70 expession than its congener,M. galloprovincialis, a warm-water species
with a more southern distribution (97). Limpet species that occur in the upper
regions of the intertidal (Lottia digitalisandLottia pelta) induce Hsps at 3–5◦C
higher than the threshold for limpets that occur lower in the intertidal (Tectura
scutum) (AL Haag & GE Hofmann, unpublished data). Subtidal species of
the marine snailTegulaexhibit much the same pattern (98). Aggregate ex-
pression of Hsp70 family members (17) occurs at 3–4◦C higher inDrosophila
melanogasterthan inD. ambigua, a fruit fly of Palearctic origin (56). The
same study reports a similar pattern for the desert antCataglyphisandFormica
polyctena, a red wood ant from a temperate climate. One remarkable outcome
of theCataglyphisstudy is that Hsp synthesis in the desert ants continues at tem-
peratures up to 45◦C, whereas temperatures above 39◦C inhibit Hsp synthesis
in the temperate species. A similar pattern (although not as extreme) is evident
for desert and non-desertDrosophila(22). These results suggest that translation
itself may have an upper thermal maximum that varies among species adapted
to different temperature environments.

Antarctic organisms represent a special case of psychrophily because the
temperatures they experience are both extremely cold and extremely stable.
In combination, do these conditions result in the evolutionary loss of a heat-
shock response? In the subtidal alga,Plocamium cartilagineum, heat-inducible
hsp70andubiquitin transcription still occur, although the threshold is a spec-
tacularly cold 5◦C (99). Antarctic yeast species express Hsps at much lower
temperatures than doesSaccharomyces, and at least one species lacks inducible
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thermotolerance (100, 101). In Antarctic fish, the picture is not as clear. Al-
though a broadly cross-reactive anti-Hsp70 antibody can detect isoforms of
Hsp70 in various tissues of the fishTrematomus bernacchii, heat shock tempe-
ratures from 6 to 10◦C do not induce additional Hsp70 accumulation (GE
Hofmann, unpublished data). A member of thehsp70gene family is present in
two Antarctic fish species,T. bernacchiiandNotothenia coriiceps(AC Whitmer
& GE Hofmann, personal communication), and has been sequenced in Antarc-
tic fish species (102). At the other extreme, some hyperthermophilic Archaea
require temperatures in excess of 100◦C to induce Hsp expression (seeHsps of
Archaea).

Thermal stress gradients can be seasonal as well as geographic. In some
cases, both Hsp expression and thermotolerance increase during warm seasons.
The intertidal musselMytilus californianusdisplays significantly different Hsp
induction profiles in summer than in winter, and summer-acclimatized mussels
induce Hsps at a threshold temperature that is 6◦C higher than the threshold
in winter-acclimatized mussels (103). However, whether the accentuated Hsp
expression in mussels in summer results in greater thermotolerance at the or-
ganismal level is unknown. Fish (34, 35) and intertidal invertebrates (31) also
vary seasonally in Hsp expression.

In addition to work we cite elsewhere, other studies examine geographical
gradients in fish (104, 105, 105a), maize (106), reptiles (107), andDrosophila
(108); intertidal gradients in limpets (27); diurnal temperature change inDroso-
phila (109) and intertidal mussels (29); diurnal variation in spruce trees (46);
and seasonal variation in insects (110).

One issue for future consideration is whether Hsps in general are specialized
to function at higher temperatures than other proteins (especially enzymes),
and whether homologous Hsps of species from various thermal environments
have corresponding variation in thermostability of function (111). For exam-
ple, that an Hsp’s resistance to thermal denaturation varies according to the
thermal niche of the species that expresses it has been demonstrated for only
a single Hsp, alpha-crystallin (112). Another issue is how differing thresholds
of Hsp expression have evolved, whether through mutations in HSF, general
thermostability of proteins and cells (113), or some other mechanism (114).

The Parasitic Environment
The roles of Hsps in host-parasite interactions have received considerable at-
tention from both clinical and biological perspectives, with the majority of the
research in two general categories. First, from the perspective of the host,
Hsps expressed by invading parasites are potent antigens that elicit an immune
response (115–117); parasites’ Hsps are thus potentially useful in generating
vaccines (118). From the perspective of the parasite, the synthesis of Hsps is a
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cellular defense mechanism that enables the parasite to live in different thermal
environments throughout its life-cycle (119). Parasites that infect mammalian
and avian hosts can undergo profound changes in temperature during the tran-
sition to these hosts (with internal temperatures of 37◦C or above) from ec-
totherm hosts or free-living stages. Induction of Hsps commonly accompanies
this transition. Numerous studies have demonstrated developmentally regulated
expression of Hsps in parasites; expression differs throughout the life-cycle
both quantitatively and in the types of Hsps that temperature change induces.
For example, mRNA transcripts forhsp70andhsp83homologues increase up
to 100-fold asTrypanosoma bruceileaves the tsetse fly and enters a mam-
malian host (120). Aquatic snails release cercariae of the parasitic helminth,
Schistosoma mansoni, into freshwater; cercariae penetrate human skin and de-
velop into adult worms, eventually causing liver cirrhosis. The cercariae express
two heat-inducible proteins that are not present in other stages (121).

Parasites that have an insect as the invertebrate vector have received much
attention with regard to the developmentally regulated expression of Hsps. Ex-
amples include parasitic nematodes (122); cestode parasites (123); the malarial
organismPlasmodium(124); Borrelia burgdorferi, the etiological agent of
Lyme disease (125); the protistLeishmania(126); Trypanosoma cruzi(127);
andTheileria(128).

Some parasite life cycles do not involve an animal vector; a free-living stage
of the parasite occurs in water or soil and enters the host. In several cases,
induction of Hsps accompanies the transition from the environment into the
host. In the fungal parasiteHistoplasma capsulatum, the temperature shift upon
infection of a mammalian host cues both the transformation from a mycelial
form to a budding yeast morphology and the expression of Hsps (129, 130).
Eimeria, an intestinal parasite of numerous animals, expresses Hsp90 during
infective life stages.Eimeriaparasites are particularly interesting because this
genus infects diverse hosts with correspondingly diverse body temperatures
(e.g. marine fish, poultry, and cattle). However, specificity of infection is high
at the species level, e.g. cattle are the exclusive host forEimeria bovis(131).
Whether the heat-shock response ofEimeriaco-evolved with its speciation into
these hosts is an open question.

Finally, the heat stress that infective life cycle stages of parasites experience
is as diverse as their hosts. In nature, parasites of ectotherms can encounter
dramatic shifts in temperature when their hosts’ body temperature varies, as has
been reported for parasites of reptiles, fish, and intertidal organisms (132, 133).

Symbiosis
Just as Hsps may play an important role in parasitism, in which one species
maintains a close but antagonistic relationship with others, they also function
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in symbiosis, in which interspecific relationships can be equally close but not
adversarial. Perhaps the most general example of this point concerns mitochon-
dria and chloroplasts, which evolved from endosymbionts that colonized other
cells early in the history of life. These organelles often require proteins that
are encoded in the nuclear genome and synthesized by the host cell, and hence
must be imported into the organelle. Hsps play diverse roles in this process in
mitochondria. A cytoplasmic Hsp70 family member maintains peptides in an
unfolded conformation, which enables the peptides to pass through pores in the
mitochondrial membrane; a mitochondrial Hsp70 is part of the protein machin-
ery that imports the peptide; and the Hsp60/Hsp10 apparatus participates in the
folding of the imported protein (134). Several groups of primitive eukaryotes
contain still other endosymbiotically derived organelles, the hydrogenosome
and the nucleomorph, whose Hsps share a characteristic sequence with those
of mitochondria and proteobacteria (135–138). The Hsp sequence similarities
have been used to suggest that hydrogenosomes may derive from mitochondria,
share a common origin with mitochondria, or represent independent coloniza-
tions of early eukaryotic cells (135–137, 139).

Aside from endosymbiotically derived organelles, the best-studied symbioses
concern bacterial endosymbionts that infect insects, including aphids, flies,
ants, and cockroaches. Aphids, for example, harbor the bacteriumBuchnerain
specialized cells (bacteriocytes) within a distinctive structure in the body cavity,
the bacteriome (140). The bacteria express a protein, symbionin, at especially
high levels, and this protein is a member of the GroEL (Hsp60) family. Other
bacterial chaperones, including GroES (Hsp10) and DnaK (Hsp70), are also
present at high levels (140). A similar phenomenon is evident in tsetse flies
(141).

The function and significance of these high Hsp levels is enigmatic. The
Hsps apparently are not a response of the endosymbionts to a novel (and there-
fore stressful) host environment, as theBuchnera/aphid symbiosis is 150–250
million years old. The endosymbionts, however, have been evolving at an espe-
cially high rate; thus, the elevated molecular chaperones could be compensating
for decreased protein stability due to the accumulation of numerous amino acid
substitutions (142, 143). Nonetheless, the bacteria themselves can mount a
strong heat-shock response when their host undergoes stress (144). Other rel-
evant symbioses include X-bacteria in the symbiosomes ofAmoeba(e.g. 145),
BradyrhizobiumandRhizobiumin the root nodules of nitrogen-fixing plants
(146), and the zooxanthellae component of corals (26, 30). A recurrent theme
is that the endosymbionts modify the amount and/or diversity of Hsps present
in the symbiosis. In some cases, this modification is thought to contribute to
the maintenance of the endosymbionts within the host, and in others to the
augmentation of the heat-shock response of the symbiosis as a whole. Finally,
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Wolbachia, a bacterial endosymbiont that infects millions of arthropod species,
both interferes with the mating of infected and uninfected hosts and can alter
their constitutive expression of Hsp70 and Hsp90 family members (147). Sim-
ulated natural heat stress can diminish this reproductive interference, possibly
by overriding the symbiont’s effect on the host Hsps.

Development
Many species exhibit characteristic and distinctive patterns of Hsp expression
(or nonexpression) during the various stages of development, including gameto-
genesis, embryogenesis, and metamorphosis (e.g. 148–151). These patterns are
often consistent with enhanced stress resistance in developmental stages that en-
counter unusual levels of environmental stress or during circumstances such as
dormancy and diapause (see below). In other cases, developmental programs of
Hsp expression ensue even in the absence of any obvious environmental stress.
One common pattern is that one or more Hsps are not expressed in the initial
phases of embryogenesis (152–156) or late in gametogenesis (157–161), pos-
sibly because Hsps can be harmful to developing cells (seeDeleterious Aspects
of Hsps). Parental provision of Hsps orhspmRNAs can sometimes override
gametic or embryonic absence of Hsp expression (162, 163); in other cases this
absence presumably poses a significant problem for continued development
in the face of stress (164). Stress not only can kill vulnerable developmental
stages outright, but also can produce lasting damage to surviving organisms,
such as the phenocopying of genetic defects; Hsps may minimize such defects
(165, 166).

Adaptational analyses of the developmental expression of Hsps are diverse.
Some plant seeds presumably must endure extremes of heat, desiccation, and
other stresses before germinating, and some must germinate under especially
challenging conditions. However, although seeds clearly undergo developmen-
tally regulated expression of Hsps and embryos can express Hsps in response
to environmental stress (167–169), few investigators have considered whether
these patterns of expression are amplified or modified in species and ecotypes
that naturally encounter especially challenging stress regimes (68, 170). Our
state of knowledge is similar for fungal spores, which express particular Hsps in
a developmentally regulated program (e.g. 171, 172). Several interesting case
studies are available for animals, although a general pattern is yet to emerge.
In the most spectacular example, encysted brine-shrimp (Artemia) embryos
undergo developmental arrest, in which they may survive for years without
environmental water or oxygen. The encysted embryos accumulate enormous
concentrations (15% of total protein) of a small Hsp (173–177) and treha-
lose (178), and suppress ubiquitination of damaged proteins (179). Non-adult
D. melanogasterinfest necrotic fruit, which can become extremely warm if it
is sunlit (53, 54); this species mounts a massive heat-shock response, which
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is greatest in the developmental stages that presumably undergo the most ex-
posure to natural heat stress (18, 19, 180). Other flies overwinter while at a
particular developmental stage, and undergo considerable Hsp expression in
response to cold (60–63). Later in development, ubiquitin may assist in the
degeneration of flight muscles that are no longer needed after nuptial flights of
insects (181). Finally, the temperature threshold for expression of Hsps may
itself undergo modification; e.g. the threshold decreases in mammalian testis,
in which gametogenesis normally occurs at lower temperatures than in the core
of the body (182, 183).

Aging and Senescence
As mammals age, damage to proteins progressively accumulates, and both the
ability to express Hsps (e.g. Hsp orhspmRNA levels after a standard exposure
to heat or other stress) and stress tolerance deteriorate (184, 185). Moreover,
individual Hsps can become less able to mitigate the effects of stress on proteins
as mammals age (186). In ecological and evolutionary terms, whether similar
Hsp-aging relationships are important or even evident in wild organisms is
unknown, although these relationships occur in diverse species in the laboratory:
Drosophila(187, 188), nematodes (189–191), andDaphnia(192).

These findings have provoked great interest in how Hsps potentially affect
senescence and lifespan. A unifying hypothesis in the foregoing work is that
protein damage, due primarily to oxidation/free radical activity, gradually accu-
mulates during the life of a cell or organism and can lead to death if unabated;
Hsps and other molecular stress responses ordinarily can mitigate this dam-
age to some extent, and the decreasing expression of Hsps with age therefore
contributes to mortality. If this hypothesis is correct, then treatments that both
reduce damage to protein and increase Hsp expression (e.g. heat shock) should
prolong life. In nematodes (Caenorhabditis elegans), some single-gene muta-
tions that increase lifespan are associated with increased thermotolerance, but
through as-yet-undescribed mechanisms (189–191). InDrosophila, heat shock
extends lifespan (193), and this extension is enhanced in flies transformed with
additional copies of thehsp70gene (194). Nutrient deprivation can also extend
life in rodents, presumably by reducing the metabolic rate and consequently, ox-
idative damage to proteins; starvation, however, variously increases, decreases,
or has no effect on Hsp expression (195–199).

FITNESS CONSEQUENCES OF HSP EXPRESSION

General Issues and Beneficial Aspects of Hsps
Understanding the consequences of variation in Hsps and the stress response for
Darwinian fitness requires a detailed appreciation of the mechanisms by which
Hsps mitigate the impact of stress on individuals in natural populations. These
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mechanisms are becoming well understood at the level of model proteins with
which Hsps can interact, but are progressively less well understood at the level of
the cell, tissue, organ, and whole organism. At the level of the model protein,
various stresses clearly either directly or indirectly result in conformational
change, and Hsps typically promote the reacquisition or maintenance of the
native structure and function by minimizing the tendency of non-native proteins
to interact inappropriately (200, 201). In cells, stress-induced conformational
change, protein aggregation, and molecular chaperoning of model proteins are
also well established (200–202), and many cellular components differ in stress-
tolerant and stress-intolerant cells (67).

Two primary issues impede the linkage of variation in these well-established
mechanisms and phenomena to variation in the fitness of individual complex
multicellular eukaryotes. First, is the variation in sensitivity to stress among
cells, cell types, tissues, organs, and organisms attributable to a small number
of critical lesions, especially sensitive targets of stress and functions of specific
Hsps in protecting or repairing these lesions/targets? Or is variation in sensitiv-
ity to stress an aggregate function of a widespread and diverse impact of stress
on cellular structures, with Hsps mitigating multiple lesions in diverse ways
(21)? The former alternative may be more analytically tractable than the latter.
Second, given that cells and organisms may have multiple Hsps in each Hsp
family, multiple Hsp families, and multiple non-Hsp mechanisms of stress mit-
igation, how can we unambiguously establish the contribution or importance of
any particular Hsp, Hsp family, or mechanism in the complex cell, tissue, organ,
or organism? Much of the published literature on the functional consequences
of Hsp expression for whole organisms or the cells they comprise runs afoul of
these issues. Literally thousands of studies report correlations between Hsp ex-
pression, diverse biological functions in the face of stress, and stress tolerance,
but these typically conclude that their findings are at best consistent with a role
of one or more Hsps in stress tolerance. Evaluating the roles of single factors
in complex systems is an ongoing challenge in most areas of the biological
sciences, and the heat-shock field largely has not yet deployed counterparts of
the solutions that other fields have developed.

One conspicuous and major exception includes techniques and approaches,
primarily drawn from molecular biology and genetics, that allow the manipu-
lation of individual Hsps or specific genes that encode them. In rare instances,
a species naturally may have an unusual genetic system (203) or a diminished
suite of Hsps (95, 204) that accomplishes the same end; also, several chemical
compounds may specifically inhibit one or more Hsps (e.g. 205, 206). The gen-
eral implication of the resulting work (Table 1) is that, even in whole organisms
or the cells they comprise, variation in single Hsps can be consequential for
fitness. Some specific implications are as follows: Individual Hsps can have
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Table 1 Phenotypes of multicellular eukaryotes, and the cells and tissues that they comprise,
for which Hsps are necessary and/or sufficienta

Protein Phenotype

Hsp10 Cellular: tolerance of ischemia (no phenotype) (308); tolerance of ischemia when
co-expressed with Hsp60 (308)

Hsp27 Cellular: resistance to chemotherapeutic drugs (309); resistance to hydrogen
peroxide (310, 311); resistance to hydrogen peroxide (no phenotype) (312);
resistance to ultraviolet radiation (no phenotype) (312); resistance of tumor
cells to monocytes (311); sensitivity to lymphokine-activated killer cells (no
phenotype) (311); tolerance of hyperthermia (312–316); resistance to tumor
necrosis factor (317) (310); tolerance of ischemia (318); resistance of actin
polymers to cytochalasin (314); accelerated nuclear protein aggregation (319);
accelerated decline of thermal radiosensitization (319)

Crystallin Cellular: tolerance of hyperthermia (320, 321); tolerance of ischemia (318);
resistance to tumor necrosis factor (310); resistance to hydrogen peroxide (310)

Hsp60 Cellular: tolerance of hyperthermia (no phenotype) (322, 323); tolerance of
ischemia (no phenotype) (308, 322, 323); tolerance of ischemia when
co-expressed with Hsp10 (308)

Hsp65 Cellular: tumor regression (324); loss of tumorigenicity (325)
Tissue/organ: regression of malignant tumors (324)

Hsp70 Cellular: tolerance of hyperthermia (326) (316, 322, 323, 327–342); tolerance of
ischemia/hypoxia (322, 323, 340, 343–345); recovery from translational and
transcriptional inhibition following heat shock (335); regulation of heat-shock
response (331, 346, 347); tolerance of endotoxin (348); reduced protein
denaturation upon heat exposure (349); tumorigenicity (350); cell proliferation
(351, 164); resistance to hydrogen peroxide (311); resistance of tumor cells to
monocytes (311); sensitivity to lymphokine-activated killer cells (no phenotype)
(311); escape from drug-induced cell cycle arrest (352); protein glycosylation
(353); tolerance of ultraviolet radiation (354); apoptosis (351, 355, 356);
resistance to apoptosis (no phenotype) (328, 329)

Tissue/organ: recovery of contractility after ischemia (345, 357–359); reduction
in myocardial infarct size (345, 359); reduction of hyperthermic damage to
midgut (221); resistance of heart to ischemic injury (357–359); resistance of
hippocampus to ischemic injury (360)

Organismal: tolerance of hyperthermia (18–20, 109, 156, 203, 221, 224, 278, 361);
growth and development (222); regulation of heat-shock response (361);
persistence in nature (no phenotype) (277)

Hsc70 Organismal: tolerance of hyperthermia (203)

Hsp72 Cellular: apoptosis (no phenotype) (362); protection against heat-induced nuclear
protein aggregation (319); protection against hypoxia (363); protection against
thermal radiosensitization (319)

Tissue/organ: reduction in myocardial infarct size (364)

Grp78 Cellular: protein secretion (229–231)

(Continued)
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Table 1 (Continued)

Protein Phenotype

Hsp90 Cellular: tolerance of hyperthermia (322, 323, 328, 329, 340); tolerance of
ischemia (no phenotype) (322, 323, 340); apoptosis (362); apoptosis
(no phenotype) (328, 329); cell proliferation and cell cycle control (365);
glucocorticoid receptor function (205)

Hsp100 Organismal: host infection inLeishmania(126)

Hsp101 Cellular: tolerance of hyperthermia (366)

Many Hsps Cellular: recovery of cell proliferation after heat shock (367); recovery from
chromosome damage after heat shock (367–369); tolerance of hyperthermia
(370, 371); tolerance of ischemia (336)

HSF Organismal: oogenesis and development (372); thermotolerance (372, 373)

aIn all cited work, specific Hsps have undergone experimental or natural manipulation.

pleiotropic effects, interacting with multiple systems in diverse ways. Findings
from manipulations of individual Hsps usually (but not always) are consistent
with the outcome of correlative studies (see above). Finally, despite the huge
body of work on Hsps and the growing use of manipulative techniques, we
have remarkably little physiological insight into exactly how the activity of
Hsps culminates in the enhanced stress tolerance of multicellular eukaryotes
and the cells and tissues that they comprise.

Interestingly, one clear conclusion that correlative studies have yielded is
that Hsps cannot account for the entirety of inducible stress tolerance (207–
217). Indeed, some component of inducible stress tolerance may be unrelated
to protein synthesis in general (214, 218, 219).

Deleterious Aspects of Hsps
The many advantages of the heat-shock response suggest that natural selection
should maximize the expression of Hsps. By contrast, the genes encoding Hsps
have not undergone unlimited amplification in the genome, and the Hsps them-
selves are subject to strict autoregulation by multiple molecular mechanisms
(220). These contrary findings suggest that Hsps can have both positive and
negative impacts on fitness, and that natural selection may have acted to balance
these impacts in setting the level of Hsp expression. For example, while small
to moderate increases in Hsp70 levels enhance inducible thermotolerance in
Drosophila, large increases in Hsp70 levels actually decrease thermotolerance
(221); evolution thus may favor an intermediate level of Hsp70. A common
theme in related work is that high levels of Hsps may be especially detrimental
to cells or developmental stages in which cell growth and division proceed at
high rates.Drosophilalarvae transformed with extra copies of thehsp70gene
have greater larva-to-adult mortality and slower development than do control
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larvae; these strain differences are proportional to the number of Hsp-inducing
heat shocks administered to the larvae (222). Larvae naturally varying in Hsp70
expression display a similar pattern (223).Drosophilacells engineered to ex-
press Hsp70 constitutively at first grow more slowly than control cells, but
subsequently resume control growth rates once the Hsp70 is sequestered from
the cytoplasm (164); indeed,Drosophilaembryos remove Hsp70 from their
cells rapidly after heat shock (224). A yeast strain that cannot express Hsp104
grows faster than its wild-type counterpart on some media (171). More gen-
erally, most animal species that have been studied do not mount a heat-shock
response during early stages of embryogenesis (seeDevelopment), when protein
synthesis may be especially intense.

These negative effects may have at least two nonexclusive explanations
(222, 225, 226): First, Hsps at high concentration could be toxic, directly in-
terfere with ongoing processes in the cell, or otherwise alter function to the
detriment of the cell (220). Second, the synthesis and degradation of Hsps
could consume an intolerably large fraction of a cell’s or organism’s nutrient
and energy stores, and/or occupy so large a fraction of the synthetic/catabolic
apparatus that the processing of other essential biomolecules suffers (226–228).
Consistent with the first explanation, cellular sequestration of Hsp70 is corre-
lated with the resumption of proliferation in cells constitutively expressing this
protein (164). Also, overexpression of an Hsp70 family member inhibits pro-
tein secretion and reduction increases secretion in mammalian cells in culture
(229–231); excess amounts of another Hsp70 family member can promote pro-
tein aggregation in vitro (M Borrelli & J Lepock, personal communication);
and Hsp70 can perturb the normal structures of nascent polypeptides (232).

Tests of the second explanation have manipulated the costs of or resources
for Hsp expression. Growth of corn in nitrogen-rich soil increases the syn-
thesis of Hsps in response to a standard heat shock (233); in plants grown in
nitrogen-poor soil, other proteins may be catabolized to supply amino acids
for synthesis of Hsps (234). These findings suggest that Hsp synthesis can be
nitrogen-limited in plants. Starvation reduces the expression of Hsp 70 family
members in mice (195). InDrosophila larvae, by contrast, co-expression of
β-galactosidase and Hsps has no greater cost for growth and development than
does expression of Hsps alone (225). Further study of this apparent trade-off of
the benefits and disadvantages of Hsp expression, moreover, has the potential
to link evolutionary and mechanistic views of this problem that heretofore have
been separate (222, 225).

MICROEVOLUTIONARY VARIATION IN HSPS

Hsps are routinely touted as adaptations that arose and are maintained via natural
selection for stress resistance. Origin and maintenance of a trait by selection
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require that it vary within populations, and that this intra-population variation
have a genetic basis and affect the Darwinian fitness of individuals. Here we
ask whether Hsps, the genes that encode them, and the factors that modify
their expression display such patterns of variation and undergo stabilizing or
directional selection in response to environmental stress.

First, not all intrapopulation and intraspecific variation results from genetic
differences. For example, seasonal acclimatization and temperature acclima-
tion in the laboratory can alter the minimum temperature at whichGillichthys,
a gobiid fish, expresses an Hsp90 family member (34, 235). Seasonal acclima-
tization likewise affects Hsp70 levels in mussels (Mytilus) (103), and routine
culture temperature affects the magnitude and temporal pattern of Hsp expres-
sion in HeLa cells (236). Such changes may stem from alterations in the cellu-
lar environment that modify the activation of HSF (113, 182, 236, 237). These
changes, however, are not universal; laboratory thermal acclimation does not
alter the thermal sensitivity of Hsp expression in fish hepatocytes in culture
(238),Drosophilalarvae (19), and mussels (103).

Even when acclimation and seasonal change are controlled, however, individ-
uals within a population or species may vary in Hsp expression and/or the genes
that determine it. Relevant research has examined this issue on two levels: di-
rect sequence variation and restriction fragment length polymorphisms (RFLPs)
(240). The sequence ofhsp70varies among strains of the parasiteTrypanosoma
(241, 242) and the nematodeC. elegans(243), and among conspecifics for some
but not all of the mammalianhsp70family members (240), as does that of the
3′ untranslated region ofhsp27in normotensive and hypertensive rats (244).
RFLPs consistent with intraspecific variation either in thehspgenes or flanking
regions are detectable in thehsp60andhsp70of the spirocheteBorrelia (245),
in multiplehsp70family members of mammals (240, 246, 247), and in several
plant species (248–250). One putative instance of intraspecific variation inhsp
copy number concernsD. melanogaster, in which at least five nearly identical
copies ofhsp70occur at two chromosomal loci. At locus 87A7, two copies are
arranged as an inverted repeat (251, 252); at 87C1, two copies flank a region
containing at least one additional copy (252, 253) plus numerousα/β repeats,
which encode heat-inducible mRNAs of no proven function (254–257). Up
to five additionalhsp70copies have been reported, with copy number varying
among strains and time of year (253, 255, 258–261). However, these reports
either cannot exclude that such variation is actually in intergenic regions or that
the reports are forDrosophilacells in culture or mutagenized laboratory strains
rather than wild or even wild-type strains. The organization of the two chromo-
somal loci reportedly varies among natural populations (253). A less equivocal
instance of evolutionary change in gene copy number concernsArabidopsis, in
which ecotypes vary in the number of ubiquitin-encoding repeats (262). For all
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of the foregoing reports, the functional significance of intraspecific variation
awaits elucidation or direct verification.

Hsp expression also exhibits genetic variation among individuals of a species;
often, this variation is correlated with stress resistance (248, 250, 263–271). For
example, isofemale lines ofDrosophilafounded from a single wild population
differ more than twofold in Hsp70 expression; this variation is correlated with
thermotolerance and is heritable (180, 223). Similarly, in the pathogenic fun-
gusHistoplasma, naturally temperature-insensitive strains express morehsp70
mRNA and do so at lower temperatures than in a temperature-sensitive strain
(272). In humans, fibroblasts isolated from desert-dwelling Turkmen express
more Hsps and have greater thermotolerance than fibroblasts from residents of
more equable climates (273); presumably, however, these peoples do not differ
in body temperature.

Given that the patterns of variation necessary for natural selection occur
within species, that selection can alter Hsp expression is not surprising. Lab-
oratory evolution at high temperatures paradoxically lowers Hsp70 expression
and inducible thermotolerance inDrosophila (19, 274), and selection for re-
sistance to hyperthermic paralysis alters both thehsp68promoter and thehsr-
omegalocus inDrosophila(254, 275). Additional findings relevant to natural
selection and its underlying genetic basis come from closely related species,
some so similar that they hybridize. In the fish speciesPoeciliopsis monacha
and P. lucida, an unusual genetic system permits the generation of hemi-
clonal lines in which the paternal genome varies against a constant mater-
nal genome. Hemiclonal thermotolerance was most strongly related to Hsc70
and only secondarily to Hsp70 levels, in a pattern consistent with straightfor-
ward Mendelian inheritance of parental genotypes and adaptation to the local
thermal environment. By contrast, the heat-shock response of interspecific hy-
brids of tomato (Lycopersicon) is not intermediate to the parental responses
(276). Non-hybridizing congeners often exhibit a correlation among the ac-
tual or inferred incidence of thermal stress in their environment, heat-shock
response, and stress tolerance. Such data are now available for diverse an-
imals (seeVariation in the Stress Response Along Environmental Gradients
of Stress).

A particular problem with such species comparisons is that the interpreta-
tion of the observed patterns is readily confounded by phylogenetic and sta-
tistical issues. A more general problem with both laboratory evolution and
species comparisons is that they describe only a supposed correlation of the
heat-shock genes/proteins of interest with evolution and seldom can establish
the importance of the genes/proteins of interest to evolutionary process and
outcome (19, 20). Study of free-ranging organisms (277) withhsptransgenes
(e.g. 109, 278) may contribute much to resolving these problems.
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THE EVOLUTIONARY HISTORY OF HSPS
AND THE GENES THAT ENCODE THEM

Hsps are among the most ancient and highly conserved of all proteins. Homo-
logues of Hsps occur in every species in which they have been sought, and in
all kingdoms of living things. Thus, Hsps represent a remarkable example of
molecular “descent with modification” at the levels of gene sequence, genomic
organization, regulation of gene expression, and protein structure and function.
So clear are the patterns of descent and modifications that they can be used to
establish the evolutionary origins and the phylogenetic affinities of the major
groups of organisms.

Hsps of Archaea and Exceptional Prokaryotes
The Archaea or archaebacteria are the most extremophilic and most primi-
tive organisms. The heat-shock response of extremophilic Archaea and nonar-
chaeal extremophiles occurs at remarkably high temperatures (279), e.g. 88◦C
in Sulfolobus(279) and >100◦C in the hyperthermophilic species designated
ES4, a heterotrophic sulfur reducer isolated from a deep-sea hydrothermal vent
(280). The archaeal genome encodes homologues of most Hsps represented
in other prokaryotes and eukaryotes (279), as well as their consensus pro-
moter sequences (281). Notably, the archaeal Hsp60 homologues assemble
into a dual ring-like structure, termed a rosettasome or thermosome, that re-
sembles the structure that the chaperones GroEL and GroES form in bacteria
(279, 282, 283). The archaeal structures have ATPase activity and can bind de-
natured proteins (282). At least some Archaea and Eubacteria differ in the
number of monomers that comprise these structures (284). Surprisingly, the
archaeal Hsp60s (e.g. TF55 ofSulfolobus) most closely resemble not a bac-
terial homologue, but the eukaryotic protein TCP1, which assembles into the
t-complex polypeptide 1 ring complex (TRiC) in the cytosol (285, 286). Pre-
viously, Hsp60 homologues were thought to be absent from the eukaryotic cy-
tosol. A growing body of evidence suggests that TCP1/TRiC and GroEL/GroES
play comparable roles in their respective organisms and cellular compartments
(287–289). Meanwhile, Trent (290) has suggested that the primary function of
TF55 may be cytoskeletal, with molecular chaperoning a secondary or derived
function.

Genes encoding Hsps are present even in the smallest of genomes. These
include the genomes of mycoplasmas (291) and the nucleomorph, the vestigial
nucleus of a phototrophic eukaryotic endosymbiont in cryptomonad algae (138).
The section on symbiosis (see above) reviews the distribution of Hsps in various
other organelles of endosymbiotic origin. Apparently, the problem of protein
folding is ancient and ubiquitous, necessitating molecular chaperones in these
diverse cases.
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Large-Scale Evolution of hsp Genes
The extraordinarily conserved nature ofhspgenes (292) has facilitated their
cloning, sequencing, and comparison in diverse organisms; their evolution is
now becoming understood in detail. Gupta and colleagues have undertaken the
most extensive surveys ofhspsequences, with a particular focus on organisms
deemed critical to understanding the relationships of major taxa (292–297). The
interpretations resulting from these comparisons relate to hypotheses about
(a) the origin of eukaryotic cells, the eukaryotic nucleus, and endoplasmic
reticulum (292, 296); (b) polyphyletic versus monophyletic origin of the major
bacterial groups (292–294); and (c) the validity of the three-domain (Archaea,
bacteria, and eukaryotes) dogma (292, 294). Whereas these interpretations are
controversial, if not revolutionary, and therefore have not received universal
acceptance, they nonetheless clearly illustrate how comparative analyses ofhsp
genes may address fundamental issues in evolutionary history.

On a less grand scale,hspgene families represent superb case studies of how
one or a small number of primitive genes can diversify to encode a suite of
compartment- and function-specific proteins. One of many examples isdnaK,
a single gene in Archaea and bacteria that has become the complex multi-
genehsp70families ofSaccharomyces(298),Drosophila(253, 299), andHomo
(300). Another example concerns the small Hsps, which evolution recruited
to become a major component of the lens of the eye: alpha crystallin (301).
A growing body of work examines the discrete evolutionary events by which
these changes may have occurred, including gene duplication/conversion events
(302), retrotransposition, horizontal exchange of genomes, and others. New
technologies promise to advance this work exponentially.

Discrete Examinations of Molecular Evolution
Ideally, a complete study of the evolutionary physiology of Hsps might examine
how the following co-evolve as populations or how closely related species
enter environments in which they face novel stresses: sequence (both coding
and non-coding) of the gene(s) for a particular Hsp, regulation ofhsp gene
expression, the role and importance of the Hsp in stress resistance, and the
intensities and durations of stress that the populations and species actually face.
Much of the evolutionary physiological investigation of Hsps fails to attain this
admittedly ambitious goal for one or more reasons: (a) The species under study
are too distantly related to reconstruct the functional, environmental, and genetic
events during their divergence; (b) molecular biology, manipulative genetics,
physiology, and environmental assessment are not all possible for the species
in question; or (c) the breadth of the techniques and approaches necessary to
perform such research is too daunting for a single research program. Two case
studies exemplify both how this goal could be approached and how far the field
has yet to go to attain it.
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The coelenterateHydra oligactisand several of its congeners are the only
multicellular eukaryotes reported not to express Hsps in response to heat shock
and other stresses. Other congeners (e.g.Hydra attenuataandH. magnipapil-
lata) have a well-developed stress response; these and other data for puta-
tive ancestors ofHydra suggest an evolutionary loss of Hsp expression in
H. oligactis (95, 96). Physiologically and ecologically,H. oligactis is defi-
cient in inducible stress tolerance and disappears from certain habitats in na-
ture during periods of stress (95). Subsequent work suggests that, at least
for Hsp70, the loss has occurred due to mutations that affect the stability of
hsp70mRNA, asH. oligactishas anhsp70gene and expresses a heat-inducible
hsp70mRNA in quantities similar to that in the heat-tolerantH. magnipapillata
(96).

Dipteran insects and their ancestors have undergone an evolutionary prolif-
eration ofhsp70genes. Mosquitoes andDrosophilashare a distinctly arranged
duplication of the induciblehsp70gene (303), suggesting that this prolifer-
ation predates the original diversification of the Diptera. Within the genus
Drosophila, all groups other than themelanogastersubgroup of species ap-
parently retain the primitive copy number of two (108, 304, 305). Within the
melanogastersubgroup, all species examined to date have four copies except
for D. melanogaster(253), which has at least fivehsp70copies in its haploid
genome (see Microevolutionary Variation in Hsps). Curiously,D. melanogaster
expresses no Hsp100 family members, which are critical for thermotolerance
in other organisms (204, 306). The proliferation ofhsp70copies is correlated
with the ecological and biogeographic distribution ofDrosophilaspecies (19).
Whereas mostDrosophila species have small geographic ranges or narrow
ecological niches, two of themelanogastersubgroup species (simulansand
melanogaster) have cosmopolitan distributions, and a third (yakuba) is eco-
logically diverse throughout sub-Saharan Africa.

CONCLUSION

Ecological and evolutionary physiological analysis of heat-shock proteins may
be nearing the end of its initial descriptive phase. Although accounts of spec-
tacular levels of Hsp-mediated stress resistance and exceptional consequences
of Hsp expression will continue to be newsworthy, the major patterns of Hsp
expression in multicellular eukaryotes are becoming so obvious that additional
descriptive work is becoming increasingly difficult to justify. Clearly, how-
ever, major questions remain unanswered. How the activities of Hsps at the
molecular level culminate in organismal stress tolerance and how thehspgenes,
their regulation, the function of the proteins they encode, and the environments
faced by the organisms in which they occur all co-evolve are but two of the
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unresolved issues reviewed here. The perspective of evolutionary physiology
can make significant contributions to the resolution of these and other issues.
By placing results in actual environmental contexts, by assessing phenotypes
of Hsps in the context of whole multicellular organisms, and by characterizing
extant and historical variation in Hsps in natural populations and taxa, evolu-
tionary physiologists can complement and extend a spectacular area of research
that has been largely restricted to the molecular/cellular levels in the laboratory.
By the same token, insights and techniques that laboratory-based investigators
provide promise to continue to revolutionize the ecological and evolutionary
study of Hsps. These approaches are both logical partners and necessary com-
plements to one another (22, 307). Our understanding of Hsps has much to gain
from the continued if not expanded synergy of these approaches.
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