Tuesday, October 28, 2014

10 28 2014 Updated Fidalgo Temperatures Year 1

FidalgoTempConcatScript.R
library(plyr)
library(ggplot2)
library(scales)
fidaugfeb<-read.table('FidAugtoFeb.csv', row.names=1)
#read in data, first change column names and remove data name in excel to make it work
head(fidaugfeb)
##          V2    V3    V4
## 1 8/17/2013  9:51 21.38
## 2 8/17/2013 10:06 21.57
## 3 8/17/2013 10:21 21.57
## 4 8/17/2013 10:36 21.76
## 5 8/17/2013 10:51 22.05
## 6 8/17/2013 11:06 22.05
fidaugfeb<-rename(fidaugfeb, c("V2"="Date",'V3'='Time','V4'='Temp'))
#rename columns
fidaugfeb$Date<-as.Date(fidaugfeb$Date, "%m/%d/%Y")
#tell R that these are dates
tmptst<-ddply(fidaugfeb,.(Date),summarise, mean_temp=mean(Temp,na.rm=T))
#creates mean temperature per date using summary statistics and ddply
plot(mean_temp~Date,data=tmptst)

plot of chunk unnamed-chunk-1

fidfebmay<-read.table('FidalgoFebtoMay2014.csv', row.names=1)
fidmayjun<-read.table('FidalgoMaytoJun14.csv', row.names=1)
fidjunjul<-read.table('FidalgoJuntoJul14.csv', row.names=1)
fidjuloct<-read.table('FidalgoJultoOct2014.csv', row.names=1)
fidjunoct<-read.table('FidalgoJuntoOct2014.csv', row.names=1)
#entered in all other CSVs
fidfebmay<-rename(fidfebmay, c("V2"="Date",'V3'='Time','V4'='Temp'))
fidmayjun<-rename(fidmayjun, c("V2"="Date",'V3'='Time','V4'='Temp'))
fidjunjul<-rename(fidjunjul, c("V2"="Date",'V3'='Time','V4'='Temp'))
fidjunoct<-rename(fidjunoct, c("V2"="Date",'V3'='Time','V4'='Temp'))
fidjuloct<-rename(fidjuloct, c("V2"="Date",'V3'='Time','V4'='Temp'))
#rename columns
fidfebmay$Date<-as.Date(fidfebmay$Date, "%m/%d/%Y")
fidmayjun$Date<-as.Date(fidmayjun$Date, "%m/%d/%Y")
fidjunjul$Date<-as.Date(fidjunjul$Date, "%m/%d/%Y")
fidjunoct$Date<-as.Date(fidjunoct$Date, "%m/%d/%Y")
fidjuloct$Date<-as.Date(fidjuloct$Date, "%m/%d/%Y")
#Date column as dates
fidy1<-rbind(fidaugfeb,fidfebmay,fidmayjun,fidjunjul,fidjunoct,fidjuloct)
#concats all temp data

fidy1edit<-read.csv("fidY1.csv")
#reads in edited CSV to correct for outliers.
fidy1edit$Date<-as.Date(fidy1edit$Date, "%m/%d/%Y")
#Dates as DATES in r
fidy1editv2<-rbind(fidy1edit,fidjunoct,fidjuloct)
#adds data for June and July to October to preedited temp.
fidy1editv2$Date<-as.Date(fidy1editv2$Date)
#turns dates into dates in r

fidy1v3<-read.csv("fidy1v3.csv")
#reads in editted temp file
fidy1v3$Date<-as.Date(fidy1v3$Date,"%m/%d/%Y")
#turns dates into DATES in r
fidmeantemp<-ddply(fidy1v3,.(Date),summarise,mean_temp=mean(Temp,na.rm=T))
#creates mean temp file
fidmintemp<-ddply(fidy1v3,.(Date),summarise,min_temp=min(Temp,na.rm=T))
#creates min temp file
fidmaxtemp<-ddply(fidy1v3,.(Date),summarise,max_temp=max(Temp,na.rm=T))
#creates max temp file
fidmedtemp<-ddply(fidy1v3,.(Date),summarise,med_temp=median(Temp,na.rm=T))
#creates med temp file
ggplot(data=fidmedtemp, aes(Date, med_temp, group=1))+geom_line(color="purple",size=1.5)+geom_abline(intercept=12.5, slope=0,color="red", size=2)+scale_x_date(breaks="1 month", minor_breaks="1 week",labels=date_format("%B %Y"))+theme(axis.text.x=element_text(angle=45, size=10, vjust=0.5))

plot of chunk unnamed-chunk-1

#plots median temps
ggplot(data=fidmintemp, aes(Date, min_temp, group=1))+geom_line(color="purple",size=1.5)+geom_abline(intercept=12.5, slope=0,color="red", size=2)+scale_x_date(breaks="1 month", minor_breaks="1 week",labels=date_format("%B %Y"))+theme(axis.text.x=element_text(angle=45, size=10, vjust=0.5))

plot of chunk unnamed-chunk-1

#plots min temps
ggplot()+geom_line(data=fidmeantemp, aes(Date,mean_temp, group=1), color="Purple",size=1)+geom_line(data=fidmintemp, aes(Date,min_temp,group=1),color="Blue",size=1)+geom_line(data=fidmaxtemp,aes(Date,max_temp,group=1),color="Red",size=1)+geom_abline(intercept=12.5, slope=0,color="Red", size=0.5)+labs(x="Date",y="Min|Max|Mean Temperatures(C)")+scale_x_date(breaks="1 month", minor_breaks="1 week",labels=date_format("%B %Y"))+theme(axis.text.x=element_text(angle=45, size=10, vjust=0.5))

plot of chunk unnamed-chunk-1

#plots all temps

Monday, October 27, 2014

10 24 2014 Manchester Fall Maintenance

Manchester WA

Cloudy, High 50's/Low 60's

Participants: Sean Bennett and Jake Heare



Performed a full workup on the trays at Manchester: counted live/dead, imaged for size, collected samples and morts. We then transferred the oysters from the trays to cages. Mortality was slight but still somewhat low. Less than 10 animals per tray on average.

Numbers as follow

4H9-12
Live   52
Dead  6

4S13-16
Live  73
Dead  6

4N1-4
Live   55
Dead   0

4S9-12
Live    57
Dead    1

4H1-4
Live    77
Dead    2

4N9-12
Live     46
Dead    3

4S5-8
Live     66
Dead    0

4H13-16
Live    60
Dead    1

4N13-16
Live    64
Dead   0

4H5-8
Live    60
Dead   6

4S1-4
Live     62
Dead    1

4N5-8
Live    62
Dead    5