Tag Archives: AlfI

Restriction Digest – Oly gDNA for RAD-seq w/AlfI

The previous attempt at making these RAD libraries failed during the prep-scale PCR, likely due to a discrepancy in the version of the Meyer Lab protocol I was following, so I have to start at the beginning to try to make these libraries again.

Since the input DNA is so degraded, I’ve repeated this using 9μg of input DNA (instead of the recommended 1.2μg). This should increase the number of available cleavage sites for AlfI, thus improving the number of available ligation sites for the adaptors.

Used a subset (10 samples) from the Ostrea lurida gDNA isolated 20150916 to prepare RAD libraries.

Followed the 2bRAD protocol (PDF) developed by Eli Meyer’s lab.

Prepared 9.0μg of each of the following samples in a volume of 9.5μL:

Google Sheet: 20151028_RADseq_DNA_calcs

 

 

Prepared master mix for restriction enzyme reaction:

REAGENT SINGLE REACTION (μL) x11
DNA 9.5 NA
10x Buffer R 1.2μL 13.2μL
150μM SAM 0.8μL 8.8μL
AlfI 0.5μL 5.5μL

 

Combined 2.5μL of the master mix with 9.5μL of each DNA sample in 0.5mL snap cap tubes. Incubated @ 37C O/N in thermal cycler (PTC-200; no heated lid).

Restriction Digest – Oly gDNA for RAD-seq w/AlfI

Previously initiated the RAD-seq procedure for the sample set described below. However, the test scale PCR yielded poor results. Katherine Silliman suggested that the poor performance of the test scale PCR was likely due to low numbers of adaptor-ligated fragments. Since the input DNA is so degraded, I’ve repeated this using 9μg of input DNA (instead of the recommended 1.2μg). This should increase the number of available cleavage sites for AlfI, thus improving the number of available ligation sites for the adaptors.

Used a subset (10 samples) from the Ostrea lurida gDNA isolated 20150916 to prepare RAD libraries.

Followed the 2bRAD protocol (PDF) developed by Eli Meyer’s lab.

Prepared 9.0μg of each of the following samples in a volume of 10μL:

Google Sheet: 20151009_RADseq_DNA_calcs

 

Prepared a 150μM working stock of the SAM buffer needed for the restriction digestion by diluting 30μL of the supplied stock (500μM) in 70μL NanoPure H2O (total volume = 100μL). This working stock was stored @ -20C in FTR 209 in the “RAD-seq Reagents” box.

Prepared master mix for restriction enzyme reaction:

REAGENT SINGLE REACTION (μL) x11
DNA 8 NA
10x Buffer R 1.2μL 13.2μL
150μM SAM 0.8μL 8.8μL
AlfI 0.5μL 5.5μL
H2O 1.5μL 16.5μL

 

Combined 4μL of the master mix with 8μL of each sample in 0.5mL snap cap tubes. Incubated @ 37C 2hrs. in thermal cycler (PTC-200; no heated lid). Heat inactivated the digest @ 65C for 10mins.

Restriction Digest – Oly gDNA for RAD-seq w/AlfI

Used a subset (10 samples) from the Ostrea lurida gDNA isolated 20150916 to prepare RAD libraries. This will be done to assess whether or not these samples, which appear to be heavily degraded, are viable for RAD-seq.

Followed the 2bRAD protocol (PDF) developed by Eli Meyer’s lab.

Prepared 1.2μg of each of the following samples in a volume of 10μL:

Google Sheet: 20150930_RADseq_DNA_calcs

 

Prepared a 150μM working stock of the SAM buffer needed for the restriction digestion by diluting 30μL of the supplied stock (500μM) in 70μL NanoPure H2O (total volume = 100μL). This working stock was stored @ -20C in FTR 209 in the “RAD-seq Reagents” box.

Prepared master mix for restriction enzyme reaction:

REAGENT SINGLE REACTION (μL) x11
DNA 8 NA
10x Buffer R 1.2μL 13.2μL
150μM SAM 0.8μL 8.8μL
AlfI 0.5μL 5.5μL
H2O 1.5μL 16.5μL

 

Combined 4μL of the master mix with 8μL of each sample in 0.5mL snap cap tubes. Incubated @ 37C O/N in thermal cycler (no heated lid).

RAD-Seq Library Prep Reagents

A box with the above title was established in the -20C in FTR 209 containing the following:

  • Thermo Scientific AlfI: ER1801
  • NEB T4 DNA ligase, 50 μL: M0202S
  • NEB 10 mM ATP, 1 mL: P0756S
  • Promega dNTPs (10 mM each): U1511
  • NEB Q5 Taq Polymerase, 100 units: M0491S

Oligos (100μL each in TE pH=8.0; barcode sequences are in bold)

Adaptor 1
5ILL-NR: CTACACGACGCTCTTCCGATCTNR

Anti-ILL: AGATCGGAAGAGC(InvdT)

Adaptor 2
3ILL-NR: CAGACGTGTGCTCTTCCGATCTNR

ILL-Lib1: AATGATACGGCGACCACCGA

ILL-Lib2: CAAGCAGAAGACGGCATACGA

ILL-HT1: AATGATACGGCGACCACCGAGATCTACACATGCATACACTCTTTCCCTACACGACGCTCTTCCGATCT

ILL-HT2:AATGATACGGCGACCACCGAGATCTACACCGTACGACACTCTTTCCCTACACGACGCTCTTCCGATCT

ILL-BC1: CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATC