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Chapter 12

Acid Sphingomyelinase-derived Ceramide Signaling in
Apoptosis

Erich Gulbins' and Richard Kolesnick®

tDepartmem of Immunology, St. Jude Children s Research Hospital, Memphis, TN 38105:
{Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, NY
10021
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1. INTRODUCTION

Biological membranes of eukaryotic cells primarily consist of
glycerophospholipids, sphingolipids and cholesterol. Sphingomyelin, which
is comprised of a highly hydrophobic ceramide moiety and a hydrophilic
phosphorylcholine headgroup, is the most prevalent cellular sphingolipid
(Figure 1). Ceramide is the amide ester of the sphingoid base D-erythro-
sphingosine and a fatty acid usually of Cy4 through Cy chain length (Figure
1). Sphingomyelin is synthesized predominanily on the luminal side of the
Golgi apparatus, but also in the plasma membrane (Jeckel et al.,, 1990;
Futerman ef al., 1990; Andrieu-Abadie et al., 1998). The two pools are
connected by vesicular transport. Sphingomyelin is almost exclusively
located in the anti-cytosolic leaflet of biological membranes resulting in lipid
bilayer asymmetry (Emmelot and Van Hoeven, 1975). Hydrogen bonds and
hydrophobic van der Waal interactions mediate the tight interaction between
the cholesterol sterol ring system and the ceramide moiety of sphingomyelin.
The lateral association of sphingolipids in the cell membrane is further
promoted by hydrophilic interactions between the sphingolipid headgroups.
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Figure 1. Displayed are the structures of sphingomyelin and ceramide. Sphingomyelinases
function as phospholipases C to hydrolyze sphingomyelin.

The association of these lipids and the high local concentration result in their
separation from phospholipids within the bilayer and the tramsformatim% of
these sphingolipid- and cholesterol-rich membrane domains into a distinct
liquid ordered phase (Harder and Simons, 1997; Brown and London, ms;
Andersen, 1998). The tightly packed sphingomyelin/cholesterol domains
have been compared to rafts floating within the phospholipid portion of the
cell membrane. Cholesterol seems to function in rafts as a hydrophobic
spacer between the bulky sphingolipids required for the generation of the
liquid ordered phase (Harder and Simons, 1997; Brown and London, 1998).
In accordance with this concept, pharmacological extraction of cholesterol
destroys these membrane rafts. This highly ordered biophysical phase results
in a relative resistance of these sphingolipid-rich rafts to detergents and,
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thus, these glycosphingolipid-enriched membrane (GEM) domains have also
been named detergent-insoluble glycolipid enriched membranes (DIGs)
(Harder and Simons, 1997; Brown and London, 1998).

Metabolites derived from sphingolipids constitute a novel class of
cellular signaling molecules involved in apoptosis, cell proliferation and
differentiation. Members of this group of signaling molecules include
ceramide (Figure 1), sphingosine, sphingosine- | -phosphate, and perhaps
ceramide l-phosphate. In the present overview, we will focus on the
function of ceramide in apoptosis. Death of cells by apoptosis is central in
the development of the organism to delete excess cells, but also in the
physiological turnover of normal tissues to remove aged or damaged cells.
Apoptosis, reviewed extensively recently (e.g. Hengartner, 2000), is
characterized by the ordered disintegration of intracellular organelles and
their packaging into apoptotic bodies, while integrity of the plasma
membrane is maintained until late in the process. These events are the result
of activation of a family of cysteine aspartate proteases known as caspases.

Ceramide, released by the acid sphingomyelinase or synthesized de novo
via the ceramide synthase pathway, is critically involved in many forms of
apoptosis. This includes apoptosis triggered by receptor molecules, e.g.
CD95 or the tumor necrosis factor receptor, during development, or upon
induction by environmental stress, e.g. irradiation, heat shock or UV light.
These stimuli initiate rapid activation of acid sphingomyelinase and
concomitant release of ceramide. Cellular effector mechanisms for ceramide
involve direct or indirect regulation of the activity of several proteins, e.g.
kinase suppressor of Ras, cathepsin D or phospholipase A;. This chapter will
consider the recently advanced concept suggesting that ceramide modifies
distinct domains in the membrane to create rafts, enabling activated
receptors to concentrate in clusters. Clustering of receptor and signaling
molecules in these rafts seems required for initiation of receptor- and cell
type-specific signaling.

2. CERAMIDE AND ACID SPHINGOMYELINASE
IN APOPTOSIS

Diverse stimuli have been shown to trigger apoptosis. In general, at least
three types of pro-apoptotic stimuli are identified. First, many receptors have
been shown to initiate apoptosis. The most important of these belong to the
tumor necrosis factor (TNF)/nerve growth factor (NGF)} receptor
superfamily and include CD95, the Trail-receptor DR4, and the TNF
receptor (TNF-R) (Walczak and Krammer, 2000; Holtzman et al., 2000}).
These receptors are constitutively present or up-regulated on the cell surface
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upon cellular maturation. Interaction of the cognate receptor with its ligand
initiates apoptosis. For example, expression of CD95 on stimulated
lymphocytes seems critically involved in regulation of the immune response,
since genetic deficiency of CD95 or its ligand in Ipr or gld mice,
respectively, results in accumulation of atypical lymphocytes and in the
development of an autoimmune-like disorder (Nagata and Suda, 1995).
Second, apoptosis can be induced by various pathophysiologic stress stimuli
including y-irradiation, ultraviolet (UV) light, heat shock, cytotoxic drugs,
H,04, toxins, bacteria and viruses (for review see Mathias er al, 1998).
Third, survival of many cells critically relies on the supply of growth factors
and their withdrawal results in apoptosis. For example, interleukin-2 is
necessary 1o prevent apoptosis in lymphocytes, while NGFs are necessary in
neurons. These cells require continuous external survival signals to balance
pre-existing intracellular death-signaling pathways. Depletion of growth
factors very likely also plays a fundamental role in apoptosis during
development. Cells provided with the correct mix of survival factors will be
maintained, while cells lacking the required growth factors undergo
apoptosis and are deleted in the developmental process. Ceramide appears
to be involved in all three forms of apoptosis, however, most data exist on
the role of ceramide in receptor and stress-mediated apoptosis.

Cellular ceramide is generated either by hydrolysis of sphingomyelin or
by de novo synthesis. Sphingomyelin hydrolysis is catalyzed by at least
three different sphingomyelinases that are discriminated by their optimal pH:
acid, neutral, and alkaline sphingomyelinases. In the present manuscript we
will focus on acid sphingomyelinase (ASM)-released ceramide.

ASM is the best characterized sphingomyelinase and many studies
implicate this enzyme in apoptosis. Upon synthesis, ASM is post-
translationally modified by glycosylation, a requirement for functionality
(Newrzella and Stoffel, 1996). A lysosomal ASM and a secretory ASM
have been distinguished (Schissel et al., 1996). They are derived from the
same gene, but differentially processed at the NH2-terminus and display a
different glycosylation pattern (Schissel et al., 1998). The glycosylation
pattern very likely determines the targeting of the ASM to acidic
compartments (lysosomes and endosomes) to regulate sphingomyelin
turnover, or into secretory vesicles for secretion into the extracellular space.
Recently, we identified a third form of ASM, which binds to the cell surface
upon application of the appropriate stimulus (Grassmé es al., 2001). At
present, it is unknown whether this surface ASM represents a third isoform
or a specialized form of the secretory or lysosomal ASM. Even if the pH at
the cell surface or the extracellular space is only slightly acidic, it is very
likely that both the secretory and the surface ASM are active: The increase
of the pH from 4.5 to neutral values does not alter the activity [V of the
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enzyme, but increases the K, value, decreasing substrate affinity (Callahan
et al., 1983). Since the activity of the ASM is modified by énvimnnwnt
(Schissel et al, 1998), the reduction of substrate affinity might be
compensated by the presence of extracellular factors such as LDL or by
membrane co-factors, restoring ASM activity even at neutral pH values.

ASM is activated by several pro-apoptotic receptors, in particular the
TNF-R (Schutze er al., 1992), IL-1 receptor (Mathias et al., 1993) and CD95
(Cifone et al., 1994; Gulbins et al., 1995; Brenner ef al., 1908), but the
enzyme is also stimulated by non-apoptotic receptors, e.g. CD40 (Grassmé er
al., 2001b) or CD28 (Boucher et al., 1995) or by internalization of some
bacteria into mammalian cells (Grassmé er al., 1997), an observation
discussed in the last part of this review. Most of these stimuli trigger only a
2-4 fold activation of the enzyme. However, since only a small portion of
total cellular ASM appears stimulated upon ligation of a cognate receptor,
whereas the bulk of the lysosomal ASM might not be regulated, it is likely
that the effective local increase in ASM activity is much greater than the
measurement of total cellular ASM activity suggests.

CD95 and the TNF-R activate ASM to release ceramide within seconds
to minutes upon ligation suggesting that ASM functions in the early
signaling of apoptosis. Several genetic studies have provided clear evidence
that ASM plays an importani role in TNF-R1- and CD9S-triggered death, at
least in some cell types (Lozano ef al.,, 2001; De Mania ef al., 1998; Paris ef
al., 2001a; Kirschnek et al., 2000). These studies employed B lymphocytes
from Niemann-Pick disease Type A (NPDA) patients, which suffer from an
inborne defect of ASM, or cells from ASM knock-out mice. Thus, human
B-lymphocytes from NPDA patients are resistant to CD93-triggered
ceramide generation and apoptosis (Grassmé ef al., 2001a; De Maria et al.,
1998). Furthermore, recent studies showed a 10-fold reduction of apoptosis
in hepatocytes isolated from ASM-deficient mice upon CD93 stimulation
compared 1o normal hepatocytes (Paris et al., 2001a; Kirschnek et al., 2000).
Addition of Cjs-ceramide restored CD95-induced apoptosis providing
evidence that ceramide is central for CD95-triggered apoptosis in this
population. This notion is supported by in vivo studies employing a CD95-
dependent autoimmune hepatitis and CD95-dependent death of lymphocytes
after anti-CD4 antibody injection (Kirschnek et al., 2000). Both types of
CD95-triggered death were deficient in mice lacking ASM. Additional
studies show, however, that the ASM is dispensible for apoptosis in some
cell types as CD95-triggered apoptosis of thymocytes is normal in ASM-
deficient animals consistent with the low ASM content of these cells (Lin et
al., 2000).

The function of ASM-released ceramide is not restricted to receptor-
initiated signaling, but has been also demonstrated to play a pivotal role in
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developmental apoptosis in at least one specific cell type. It has been shown
that ASM is required for the normal development of the ovaries (Morita et
al., 2000). The normal pattern of development of the ovary involves
deletion of as many as 80% of all oocytes before birth of the mouse. A
similar process occurs in the human female. Genetic deficiency of ASM
prevented developmental apoptosis of oocytes resultipg in  oocytes
hyperplasia at birth. Further, oocytes from asmase” mice, when
superovulated from adult females, were resistant to therapeutic levels of
daunorubicin, in contrast to wild type littermates. These investigations
provide clear genetic evidence for a central role for ASM in developmental
and siress-induced deletion of cocytes.

In addition to the function of the ASM in receptor-triggered and
developmental apoptosis, the enzyme has a central function in the cellular
response to environmental stress stimuli. This review will focus on the
examples of ischemia, ultraviolet (UV) light exposure and, in particular, y-
irradiation.

Ischemia is a major cause of some important clinical problems including
myocardial infarction and stroke. A recent study on stroke showed that
ischemia results in activation of ASM and ceramide release (Yu ef al., 2000).
The significance of this finding is indicated by the resistance of asmase”
mice to focal cerebral ischemia. Those mice were protected against the
middle cerebral artery stroke syndrome showing smaller infarct sizes and
less behavioral changes than their wild type littermates. Consistent with
these data, hippocampal neurons isolated from asmase” mice were resistant
1o hypoxic and excitotoxic stress compared to their wild type siblings. These
genetic data suggest that activation of neuronal ASM is central to stress-
induced apoptotic death of hippocampal neurons.

In addition, several studies identified ASM involvement in the stress
response leading to apoptosis induction upon UVA exposure (Huang ef al.,
1997). In contrast to wild type B blasts, M51418 B blasts derived from a
patient with Niemann-Pick disease were defective in the ASM activation,
ceramide generation and c-Jun N-terminal kinase (JNK)} activation that
occurred within minutes of UVA exposure, and were defective in apoptosis
induction. UVB and UVC responses were normal in MS1418 cells
indicating specific utilization of the ASM-mediated signaling mechanism for
UVA.induced apoptosis. That JNK was required for UVA-induced
apoptosis was derived from studies using jnkl-/- and jnk2-/- cells which still
activated ASM but were found resistant to UVA-induced apoptosis
compared to wild type counterparts (Zhang, 2001).

Finally, ASM may be central to the response to y-irradiation in vitro and
in vivo, in some cells. A requirement for ASM for release of ceramide upon
irradiation has been observed in T- and B-lymphocytes (Santana er al,
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1996), murine embryonic fibroblasts (Lozano ef al., 2001} and endothelial
cells (Pena et al., 2000; Paris er al., 2001a). ASM deficiency prevented
ceramide release and resulted in resistance of these cells to the ionizing
radiation while re-constitution of ASM restored irradiation-triggered
ceramide generation and cell death. The significance of ASM for radiation-
induced cell death is clearly defined in experiments on ASM knock-out mice
(Santana et al., 1996; Pena et al., 2000; Paris er al., 2001b). Mice exposed
to y-irradiation failed to generate ceramide in endothelial cells in the lung
(Santana et al., 1996), small intestine (Paris et al., 2001b) or brain (Santana
et al., 1996) and were resistant to radiation-induced damage, events readily
observed in normal mice. In fact, asmase” mice were resistant to the GI
syndrome, & major limiting toxicity for use of chemotherapy and of radiation
to the abdomen (Paris et al., 2001b). Likewise, oocytes within the ovaries of
asmase” mice resisted irradiation if pre-treated with sphingosine 1-
phosphate, a ceramide metabolite and antagonist, whereas vehicle-treated
oocytes died (Morita er al., 2000). However, in the murine thymus,
mdjat‘ion-mggere\d, cell death does not seem to involve ASM, since the
thymus of asmase™ mice were as sensitive to irradiation as asmase™
littermates (Santana er al., 1996). This indicates different cells employ
different mechanisms to trigger apoptosis in response to a single stress.

3. ASM ACTIVATION METHODS

Molecular mechanisms mediating activation of ASM by CD95 or the
TNF-R are still only poorly understood. Both receptors contain a short
intracellular domain, the death domain (Itoh and Nagata, 1993), which is
required for apoptosis (Itoh and Nagata, 1993), and crucial for ASM
activation (Jekle er al,, 2001). This is consistent with the finding that
caspases, which interact with the death domain of CD95 or the TNF-R via
the adapter proteins FADD and TRADD, respectively, are involved in
ceramide release (Brenner ef al., 1998; Schwandner ef al., 1998; Jekle ef af.,
2001; Grullich et al.,, 2000). Thus, overexpression of FADD or caspase 8, or
transfection of a constitutively active caspase 8 mutant, resulted in increased
ceramide release suggesting that FADD and caspase 8 regulate ceramide
release during some forms of apoptosis (Schwandner ef al., 1998; Gruilich e
al., 2000). A role for caspase 8 in ASM activation and ceramide release
upon CD9S5 triggering is also suggested by the finding that transfection of
Crm A, a viral protein blocking some caspases, or treatment of cells with
Ac-YVAD-cmk, a pharmacological inhibitor of caspases, prevent ASM
stimulation and ceramide release by CD95 (Brenner et al., 1998). However,
caspase 8 seems not to be involved in TNF-R-triggered ASM stimulation,



516 Erich Gulbins and Richard Kolesnick

which appears mediated by a yet unknown initiator caspase (Schwandner et
al., 1998). At present, the intermediates between caspases and ASM are
unknowr.

Recent studies showed that ASM  specifically associates with
phosphatidylinositol-3-kinase {P1-3-K) upon NGF stimulation of PC12 cells
via TrkA (Bilderback et al., 2001). Association between the two molecules
was mediated by the regulatory p85 subunit of PI-3-K and was restricted to
membrane rafts. Activation of PI-3-K by NGF triggering resulted in an
approximately 50% reduction of ASM activity pointing to a negative
regulation of ASM by this mechanism.

4. NEUTRAL AND ALKALINE
SPHINGOMYELINASES

In addition 1o ASM, neutral sphingomyelinase (NSM) is activated by the
TNF-R and CD95 (Cifone ef al., 1995; Chatterjee, 1994). However, at least
for CD95, the NSM functions at a later phase of the apoptotic process, and
ceramide released by NSM seems to have a completely different role than
ceramide released by ASM. It is likely that NSM, which resides in the
cytosol, pains access to sphingomyelin only in the late phase of apoptosis,
and may be involved in an amplification loop for the apoptotic process. In
addition to its activation by the TNF-R and CD95, NSM is also stimulated
by neurotrophic factors, CD40 ligand, L-selectin, daunorubicin,
dexamethasone, D-cytosine arabinoside, cell cycle arrest, serum deprivation
and cell senescence {for review see Ferlinz et al, 2000). Thus, ceramide
released by NSM may serve diverse functions depending on cell type or the
context in which the lipid is acting. The tight regulation of the NSM by
glutathione suggests the enzyme to be involved in sensing oxidative stress
(Liv and Hannun, 1997). A recently identified buman alkaline
sphingomyelinase (Nyberg er al, 1996) from bile with an enzymatic
oplimum activity at pH 9.0 does not seem to be involved in cellular
signaling.

5. CELLULAR TARGETS OF CERAMIDE IN
APOPTOSIS

Ceramide has been shown to regulate directly or indirectly kinase
suppressor of Ras (KSR; identical to ceramide-activated protein kinase)
(Basu er al., 1998), a ceramide-activated protein phosphatase (Dobrowsky
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and Hannun, 1993), protein kinase C (Muller er al,, 1995), e-Raf-1 (Yao et
al., 1995), the small G-proteins Ras and Rac (Gulbins ef al., 1995: Bnennér
et al., 1997), Src-like tyrosine kinases (Gulbins er al., 1997)., phos.ijhmipfasé
A; (Huwiler er al., 2001), cathepsin D (Heinrich er al., 1999), Jun-N-
terminal kinases (Westwick er al., 1995) and the ion channels K;l 31 and
CRAC (Szabo et al., 1996, Lepple-Wienhues et al., 1999) (Table 1. B

Table 2. Shown is & summary of direct or indirect targets of cellular ceramide indicatit .
T iole functions of this lipid mediator t targets of cellular ceramide indicating the
Targets of ceramide

Kinase suppressor of Ras (KSR = ceramide-activated protein kinase)*

Ceramide-activated protein phosphatase '

Protein kinase C isoforms alpha, delta and zeta*

¢c-Raf-1*

The small G-proteins Ras and Rac

Sre-like tyrosine kinases

Phospholipase A;*

Cathepsin D*

Jun-N-terminal kinases

lon channels (Kv1.3 and CRAC)

* indicates putative direct targets of ceramide

Clnstimulaged

Figure 2. The confocal microscopy results show the clustering of CD9S upon stimulation.
Clustered CD95 co-localizes with ASM in the cell membrane. ASM is mansported to the cell
membrane most likely with intracellular storage vesicles, which fuse with the cell membrane
upon CD95 stimulation. Unstimulated cells show a homogenous distribution of CDY5 in the
cell membrane. Cells were stimulated via CD95 for 2 min or left unstimulated, fixed,
permeabilized, stained with a FITC-labeled anti-CD95 and a Texas fed anti-ASM antibody
and analyzed by confocal microscopy. The right pictures show the overlay.
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The membrane-associated kinase KSR plays an important role in
ceramide-mediated regulation of BAD, a pro-apoptotic protein belonging to
the Bcl-2-like protein family (Basu et al., 1998). Ceramide indirectly
activates BAD via a pathway involving KSR, Ras, c-Raf-1, and MEK-1.
Stimulation of this pathway results in Akt inactivation. Since the kinase
activity of Akt maintains Bad in the inactive form, inhibition of Akt in turn
releases BAD and, finally, permits BAD-triggered cell death.

While the exact mechanism of ceramide-mediated regulation of most of
the above proteins is still unknown, ASM-released ceramide binds directly to
PLA; and cathepsin D (Huwiler et al., 2001; Heinrich ez al., 1999). Binding
of ceramide to cathepsin D in endosomes triggers autocatalytic cleavage of
cathepsin to its active form (Heinrich er afl, 1999). However, the
physiological role of ceramide binding to cathepsin D and PLA, for
apoptosis still remains to be determined.

ASM translocates 1o the cell surface to modify rafts
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Figure 3. Primury stimulation of CD95 is insufficient to trigger apoptosis but sufficient to
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We have recently suggested a novel concept for the function of ceramide
(Figures 2 and 3). Stimulation via CD95 or CD40 with the cognate ligand
results in translocation of ASM onto the extracellular leaflet of the cell
membrane (Grassmé et al., 2001a; Cremesti ef al., 2001). Surface ASM,
now in the proximity of sphingomyelin which predominantly resides in the
outer plasma membrane of mammalian cells, releases extracellutarly-
oriented ceramide within sphingolipid rich rafts. The notion of a function of
ASM in lipid rafts is consistent with the findings of other groups that
demonstrated an ASM-mediated consumption of sphingomyelin and release
of ceramide in rafts upon stimulation of several receptors including the 111
and p75 NGF receptor (Liu and Anderson, 1995; Bilderback et al., 1997).
Accumulation of ceramide in rafts may alter the rafts in several respects
based on data derived from biophysical studies using model membrane
systems: First, ceramide has the tendency to spontaneously self-aggregate
into microdomains (Huang et al., 1999; Veiga et al., 1999; ten Grotenhuis er
al., 1996) and, second, ceramide-rich microdomains are capable of fusing
into larger platforms (Holopainen et al, 1998). Thus, generation of
ceramide within rafts may result in their fusion into larger platforms with
altered biophysical properties. Those ceramide rich raft-platforms may then
serve to cluster liganded receptor molecules, e.g, CD95 or CD40,
Clustering results in high receptor density and may facilitate trans-activation
of intracellular signaling molecules associating with the receptor. In
addition, trapping of activated receptors in rafts may stabilize the interaction
with ligand. Finally, ceramide-enriched rafts may recruit intracellular
signaling molecules to the activated, clustered receptor, exclude inhibitory
pathways and/or directly alter the affinity/avidity of the receptor for its
ligand. A modification of intracellular signaling molecules by ceramide
generated in rafts has been recently demonstrated for P1-3-K (Zundel et al.,
2000).  Those studies identified an ASM- and ceramide-dependent
recruitment of caveolin 1 to PI-3-K-receptor complexes within rafis, which
blocked the activity of PI-3-K. The inhibition of anti-apoptotic PI-3-K by
ceramide through caveolin 1, then sensitized cells to apoptotic stimuli.

The concept of ceramide activity in and modification of rafts also
provides an explanation for the activation and function of ASM and
ceramide in non-apoptotic signaling pathways that might require clustering
of specific receptors. Thus, preliminary studies suggest that ASM signaling
in rafts might mediate clustering of CD40, CD28, CD48 or the CFTR
molecule.

Further, rafts altered by stimulated ASM activation may be involved in
non-receptor-mediated signaling. For instance, UVC triggers aggregation of
cell surface CD95 (Rehemtulla ef al., 1997), which might be sufficient to
initiate signaling of CD95 at least under stress conditions. Likewise, it has
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been shown that stress stimuli are able to trigger aggregation of the TNF-R
tey initiate cell death (Boldin ef al., 1993). Activation of both receptors by
stress stimuli seems to occur in the absence of the CD95-ligand or TNF,
respectively. Thus, it is possible that some stress stimuli alter the
conformation of CD95 or change the composition of sphingolipid-rich rafts
permitting trapping of unliganded CD95 molecules. This may result in low
level receptor activation, which even if inefficient, may be sufficient to
gignal apoptosis, if persistent. This notion is supported by the finding that
dominant negative FADD blocks, at least in part, UV-induced apoptosis
(Chatterjee and Wu, 2001). The relationship, if any, of CD95 clustering to
the aforementioned JNK activation requirement for UV A-induced apoptosis
15 unknown.

6. CONCLUSIONS

A variety of studies demonstrate a central role for ASM and ceramide in
geveral forms of apoptosis, Ceramide seems to regulate the activity of
certain proteing and, thus, may function, in some circumstances, as a second
messenger. In addition, the concept of raft modification by ceramide
provides a comprehensive model for cellular effects of ceramide, and
perhaps 4 biophysical explanation for the diverse functions of this lipid.
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