Friday, November 14, 2014

11 14 2014 WSN Presentation and Live Tweet

Today I'm presenting my research at the Western Society of Naturalist Conference in Tacoma. I will be live tweeting during the event both before and after my talk. Follow my twitter @HeareBraindIdea for live updates.

Wednesday, November 12, 2014

11 12 2014 WSN Practice Talk

Here is a practice talk of my upcoming presentation at the Western Society for Naturalists at Tacoma, WA. Check it out!

Tuesday, November 11, 2014

11 11 2014 NEW Size Distribution Graphs with STATS!

y1sizedist.R
require(ggplot2)
## Loading required package: ggplot2
require(plyr)
## Loading required package: plyr
require(splitstackshape)
## Loading required package: splitstackshape
## Loading required package: data.table
y1size=read.csv('Y1size.csv')
#creates dataframe and reads in the CSV file for sizes
View(y1size)
#check data
y1size$Date<-as.Date(y1size$Date, "%m/%d/%Y")
#make R understand dates
y1meansize<-ddply(y1size,.(Date,Site,Pop),summarise, mean_size=mean(Length.mm,na.rm=T))
#create table of ave size for outplant and year one for each pop at each site
#print it out
print(y1meansize)
##          Date       Site Pop mean_size
## 1  2013-08-16    Fidalgo  2H     10.67
## 2  2013-08-16    Fidalgo  2N     11.60
## 3  2013-08-16    Fidalgo  2S     11.25
## 4  2013-08-16 Manchester  4H     10.53
## 5  2013-08-16 Manchester  4N     13.40
## 6  2013-08-16 Manchester  4S     11.30
## 7  2013-08-16 Oyster Bay  1H     10.49
## 8  2013-08-16 Oyster Bay  1N     10.90
## 9  2013-08-16 Oyster Bay  1S     12.15
## 10 2014-09-19 Oyster Bay  1H     27.96
## 11 2014-09-19 Oyster Bay  1N     35.81
## 12 2014-09-19 Oyster Bay  1S     27.98
## 13 2014-10-17    Fidalgo  2H     24.40
## 14 2014-10-17    Fidalgo  2N     29.10
## 15 2014-10-17    Fidalgo  2S     28.91
## 16 2014-10-24 Manchester  4H     21.49
## 17 2014-10-24 Manchester  4N     24.37
## 18 2014-10-24 Manchester  4S     23.99
#now we need to create subsets for each site for out plant and end of year 1
outmany1<-ddply(y1size,.(Length.mm,Pop,Tray,Sample,Area),subset,Date=="2013-08-16"&Site=="Manchester")
outfidy1<-ddply(y1size,.(Length.mm,Pop,Tray,Sample,Area),subset,Date=="2013-08-16"&Site=="Fidalgo")
outoysy1<-ddply(y1size,.(Length.mm,Pop,Tray,Sample,Area),subset,Date=="2013-08-16"&Site=="Oyster Bay")
endmany1<-ddply(y1size,.(Length.mm,Pop,Tray,Sample,Area),subset,Date=="2014-10-24"&Site=="Manchester")
endfidy1<-ddply(y1size,.(Length.mm,Pop,Tray,Sample,Area),subset,Date=="2014-10-17"&Site=="Fidalgo")
endoysy1<-ddply(y1size,.(Length.mm,Pop,Tray,Sample,Area),subset,Date=="2014-09-19"&Site=="Oyster Bay")

#Plot the distributions of the sizes for each pop at each site for outplant and end of year 1.
#This allows us to visualize differences in populations.
ggplot()+
  geom_density(data=outmany1,aes(x=Length.mm,group=Pop,colour=Pop,fill=Pop),alpha=0.3)+
  geom_density(data=endmany1,aes(x=Length.mm,group=Pop,colour=Pop,fill=Pop),alpha=0.3)+
  scale_colour_manual(values=c("blue","purple","orange"))+
  scale_fill_manual(values=c("blue","purple","orange"))+
  ggtitle("Size Comparison\nAugust 2013 vs. October 2014")

plot of chunk unnamed-chunk-1

ggplot()+
  geom_density(data=outfidy1,aes(x=Length.mm,group=Pop,colour=Pop,fill=Pop),alpha=0.3)+
  geom_density(data=endfidy1,aes(x=Length.mm,group=Pop,colour=Pop,fill=Pop),alpha=0.3)+
  scale_colour_manual(values=c("blue","purple","orange"))+
  scale_fill_manual(values=c("blue","purple","orange"))+
  ggtitle("Size Comparison\nAugust 2013 vs. October 2014")

plot of chunk unnamed-chunk-1

ggplot()+
  geom_density(data=outoysy1,aes(x=Length.mm,group=Pop,colour=Pop,fill=Pop),alpha=0.3)+
  geom_density(data=endoysy1,aes(x=Length.mm,group=Pop,colour=Pop,fill=Pop),alpha=0.3)+
  scale_colour_manual(values=c("blue","purple","orange"))+
  scale_fill_manual(values=c("blue","purple","orange"))+
  ggtitle("Size Comparison\nAugust 2013 vs. September 2014")

plot of chunk unnamed-chunk-1

#Now we need to do some anovas as we assume the data is normally distributed.
#First we have to create a column of pop labels that don't have the site designation in them
y1size$Pop2<-y1size$Pop
y1size$Pop2<-revalue(y1size$Pop2,c("1H"="H","2H"="H","4H"="H","1N"="N","2N"="N","4N"="N","1S"="S","2S"="S","4S"="S"))
#Here we subset the data set to only include data from the end of year 1
endy1<-ddply(y1size,.(Length.mm,Site,Pop,Tray,Sample,Area,Pop2),subset,Date>="2014-09-19")
#Run the ANOVA comparing site,pop, and site:pop to show significant differences
sizeaov<-aov(endy1$Length.mm~endy1$Site+endy1$Pop2+endy1$Site:endy1$Pop2,endy1)
summary(sizeaov)
##                         Df Sum Sq Mean Sq F value Pr(>F)    
## endy1$Site               2  14168    7084   263.5 <2e-16 ***
## endy1$Pop2               2   8254    4127   153.5 <2e-16 ***
## endy1$Site:endy1$Pop2    4   3368     842    31.3 <2e-16 ***
## Residuals             2283  61368      27                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Everything is significantly different. YAY!
#Time to do a Tukey test to illucidate what is different from what exactly. 
sizesvptukey<-TukeyHSD(sizeaov)
print(sizesvptukey)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = endy1$Length.mm ~ endy1$Site + endy1$Pop2 + endy1$Site:endy1$Pop2, data = endy1)
## 
## $`endy1$Site`
##                         diff    lwr    upr p adj
## Manchester-Fidalgo    -4.281 -4.862 -3.701     0
## Oyster Bay-Fidalgo     2.451  1.772  3.129     0
## Oyster Bay-Manchester  6.732  6.000  7.463     0
## 
## $`endy1$Pop2`
##       diff    lwr     upr p adj
## N-H  4.545  3.922  5.1683     0
## S-H  2.975  2.358  3.5911     0
## S-N -1.571 -2.198 -0.9432     0
## 
## $`endy1$Site:endy1$Pop2`
##                                diff      lwr      upr  p adj
## Manchester:H-Fidalgo:H     -2.90887  -4.2476  -1.5702 0.0000
## Oyster Bay:H-Fidalgo:H      3.55552   2.1100   5.0010 0.0000
## Fidalgo:N-Fidalgo:H         4.69502   3.5223   5.8677 0.0000
## Manchester:N-Fidalgo:H     -0.02951  -1.4073   1.3483 1.0000
## Oyster Bay:N-Fidalgo:H     11.40509   9.6848  13.1254 0.0000
## Fidalgo:S-Fidalgo:H         4.50490   3.3091   5.7007 0.0000
## Manchester:S-Fidalgo:H     -0.41572  -1.7355   0.9041 0.9879
## Oyster Bay:S-Fidalgo:H      3.58281   1.9898   5.1758 0.0000
## Oyster Bay:H-Manchester:H   6.46439   4.9055   8.0232 0.0000
## Fidalgo:N-Manchester:H      7.60389   6.2941   8.9137 0.0000
## Manchester:N-Manchester:H   2.87936   1.3831   4.3756 0.0000
## Oyster Bay:N-Manchester:H  14.31397  12.4974  16.1306 0.0000
## Fidalgo:S-Manchester:H      7.41377   6.0832   8.7443 0.0000
## Manchester:S-Manchester:H   2.49316   1.0501   3.9362 0.0000
## Oyster Bay:S-Manchester:H   6.49168   4.7951   8.1882 0.0000
## Fidalgo:N-Oyster Bay:H      1.13950  -0.2793   2.5583 0.2355
## Manchester:N-Oyster Bay:H  -3.58503  -5.1776  -1.9925 0.0000
## Oyster Bay:N-Oyster Bay:H   7.84957   5.9529   9.7463 0.0000
## Fidalgo:S-Oyster Bay:H      0.94938  -0.4886   2.3874 0.5085
## Manchester:S-Oyster Bay:H  -3.97124  -5.5139  -2.4286 0.0000
## Oyster Bay:S-Oyster Bay:H   0.02729  -1.7548   1.8093 1.0000
## Manchester:N-Fidalgo:N     -4.72453  -6.0743  -3.3748 0.0000
## Oyster Bay:N-Fidalgo:N      6.71007   5.0121   8.4080 0.0000
## Fidalgo:S-Fidalgo:N        -0.19012  -1.3535   0.9733 0.9999
## Manchester:S-Fidalgo:N     -5.11074  -6.4013  -3.8202 0.0000
## Oyster Bay:S-Fidalgo:N     -1.11221  -2.6811   0.4567 0.4052
## Oyster Bay:N-Manchester:N  11.43460   9.5890  13.2802 0.0000
## Fidalgo:S-Manchester:N      4.53441   3.1645   5.9043 0.0000
## Manchester:S-Manchester:N  -0.38621  -1.8656   1.0932 0.9966
## Oyster Bay:S-Manchester:N   3.61232   1.8848   5.3399 0.0000
## Fidalgo:S-Oyster Bay:N     -6.90020  -8.6142  -5.1862 0.0000
## Manchester:S-Oyster Bay:N -11.82081 -13.6235 -10.0181 0.0000
## Oyster Bay:S-Oyster Bay:N  -7.82228  -9.8337  -5.8109 0.0000
## Manchester:S-Fidalgo:S     -4.92061  -6.2322  -3.6090 0.0000
## Oyster Bay:S-Fidalgo:S     -0.92209  -2.5083   0.6641 0.6791
## Oyster Bay:S-Manchester:S   3.99853   2.3168   5.6802 0.0000
#WOW That's a lot of differences. It would be easier to say what isn't significantly different.
#Manchester Fid Pop is not sig diff from Fidalgo Dabob pop
#Manchester Oys pop is not sig diff from Fidalgo Dabob pop
#Fidalgo Fid pop is not sig diff from Oyster Bay Dabob pop
#Fidalgo Oys pop is not sig diff from Oyster Bay Dabob pop
#Oyster Bay Oys pop is essentially equivalent to Oyster Bay Dabob pop
#Fidalgo Oys pop is not sig diff from Fidalgo Fid pop
#Oyster Bay Oys pop is not sig diff from Fidalgo Fid pop
#Manchester Oys pop is not sig diff from Manchester Fid pop
#Oyster Bay Oys pop is not sig diff from Fidalgo Oys Pop