Tag Archives: SR ID: 1504

qPCR – Jake’s O.lurida ctenidia 1hr post-mechanical stress DNased RNA

Ran qPCR on DNased RNA from earlier today to assess whether there was any residual gDNA after the DNase treatment with Oly_Actin_F/R primers (SR IDs: 1505, 1504).

Used 1μL from all templates.

All samples were run in duplicate.

Positive control was HL1 O.lurida DNA isolated by Jake on 20150323.

Cycling params:

  • 95C – 2.5mins
  • 40 cycles of:
    • 95C – 10s
    • 60C – 20s
  • Melt curve

Master mix calcs are here: 201500806_qPCR_Oly_DNased_RNA

qPCR Plate Layout: 20150806_qPCR_plate_Jake_Oly_DNased_RNA

Results:

qPCR Data File (Opticon): 20150806_165044.tad
qPCR Report (Google Spreadsheet): 20150806_qPCR_Report_Jake_Oly_DNased_RNA

Positive control comes up around cycle ~21.

No amplification in the no template controls.

Two wells of the DNased RNA samples exhibit amplification (E3, F6), however the corresponding respective replicate does not. Will proceed with reverse transcription.

 

Amplification Plots

Positive Controls

 

Melt Curves

Positive Controls (HL1)

DNased RNA Samples

Follow the green and red lines with the vertical bars. The different colors reflect that those are two different samples. Additionally, their respective replicates do not exhibit amplification.

qPCR – Re-run Jake’s O.lurida DNased RNA Samples NC1, SC1, SC2, SC4 from 20150514

The following DNased RNA samples showed inconsistencies between qPCR reps (one rep showed amplification, the other rep did not) on 20150514:

  • NC1
  • SC1
  • SC2
  • SC4

Reran these four samples to obtain a definitive answer as to whether or not they have residual gDNA in them prior to using them to make cDNA.

Used Oly_Actin primers (SR IDs: 1504, 1505)

Used 1μL from all templates.

All samples were run in duplicate.

Positive control was HL1 O.lurida DNA isolated by Jake on 20150323.

Cycling params:

  • 95C – 2.5mins
  • 40 cycles of:
    • 95C – 10s
    • 60C – 20s
  • Melt curve

Master mix calcs: 20150521_qPCR_Oly_DNased_RNA

Plate layout: 20150521_qPCR_plate_Jake_Oly_DNased_RNA

Results:

qPCR Data File (Opticon): Sam_20150521_145749.tad
qPCR Report (Google Sheet): 20150521_qPCR_Report_Jake_Oly_DNased_RNA

 

No amplification in any of the RNA samples, nor the NTCs. Will make cDNA.

 

Amplification Plots

 

 

Melt Curves

qPCR – Jake’s O.lurida ctenidia DNased RNA (1hr Heat Shock Samples)

Ran qPCR on DNased RNA from earlier today to assess whether there was any residual gDNA after the DNase treatment with Oly_Actin_F/R primers (SR IDs: 1505, 1504).

Used 1μL from all templates.

All samples were run in duplicate.

Positive control was HL1 O.lurida DNA isolated by Jake on 20150323.

Cycling params:

  • 95C – 2.5mins
  • 40 cycles of:
    • 95C – 10s
    • 60C – 20s
  • Melt curve

Master mix calcs are here (used same calcs from the other day): 20150512_qPCR_Oly_RNA

Plate layout: 20150514_qPCR_plate_Jake_Oly_1hr_HS_DNased_RNA

Results:

qPCR Data File (Opticon): Sam_20150514_170332.tad

qPCR Report (Google Spreadsheeet): 20150514_qPCR_Report_Jake_Oly_DNased_1hr_HS_RNA

 

Positive control samples are the only samples that produced amplification (cycle ~20). Will proceed to making cDNA.

 

Amplification Plots

 

Melt Curves

qPCR – Jake’s O.lurida ctenidia DNased RNA (Control Samples)

Ran qPCR on DNased RNA from earlier today to assess whether there was any residual gDNA after the DNase treatment with Oly_Actin_F/R primers (SR IDs: 1505, 1504).

Used 1μL from all templates.

All samples were run in duplicate.

Positive control was HL1 O.lurida DNA isolated by Jake on 20150323.

Cycling params:

  • 95C – 2.5mins
  • 40 cycles of:
    • 95C – 10s
    • 60C – 20s
  • Melt curve

Master mix calcs are here: 20150514_qPCR_Oly_DNased_RNA

qPCR Plate Layout: 20150514_qPCR_plate_Jake_Oly_Control_RNA

Results:

qPCR Data File (Opticon): Sam_20150514_153529.tad

qPCR Report (Google Spreadsheet): 20150514_qPCR_Report_Jake_Oly_DNased_Control_RNA

Positive control comes up around cycle ~21.

No amplification in the no template controls.

Four wells of the DNased RNA samples exhibit amplification (B5, C10, C12, D3), however each respective replicate does not. Will re-test these four samples (NC1, SC1, SC2, SC4).

 

Amplification Plots

 

Melt Curves

 

qPCR – Jake O.lurida ctenidia RNA (Heat Shock Samples) from 20150506

Ran qPCRs on the O.lurida total RNA I isolated on 20150506 to assess presence of gDNA carryover with Oly Actin primers (SR IDs: 1505, 1504).

Used 1μL from all templates.

All samples were run in duplicate.

Positive control was HL1 O.lurida DNA isolated by Jake on 20150323.

Master mix calcs are here: 20150512_qPCR_Oly_RNA

Cycling params:

  • 95C – 3mins
  • 40 cycles of:
    • 95C – 5s
    • 60C – 20s
  • Melt curve

 

Plate layout: 20150512_qPCR_plate_Jake_Oly_HS_RNA

Results:

qPCR Data File (Opticon2): Sam_20150512_123246.tad

qPCR Report (Google Spreadsheet):20150512_qPCR_Report_Jake_Oly_HS_RNA

Excluding the no template controls (NTC), all samples produced amplification. Will require DNasing before making cDNA.

Related to the qPCR I ran earlier today with these same primers, the efficiencies of the reactions on this plate are significantly better (i.e. normal; >80% efficiencies) than the earlier qPCR. The improved efficiency would also explain why the positive control comes up two cycles earlier on this run.

In the amplification plots below, the positive control reps are the two lines coming up at cycle ~20.

 

Amplification Plots

 

Melt Curves

qPCR – Jake O.lurida ctenidia RNA (Control Samples) From 20150507

Ran qPCRs on the O.lurida total RNA I isolated on 20150507 to assess presence of gDNA carryover with Oly Actin primers (SR IDs: 1505, 1504).

Used 1μL from all templates.

All samples were run in duplicate.

Positive control was HL1 O.lurida DNA isolated by Jake on 20150323.

Master mix calcs are here: 20150512_qPCR_Oly_RNA

Cycling params:

  • 95C – 3mins

40 cycles of:

  • 95C – 5s
  • 60C – 20s

Melt curve

 

Plate layout: 20150512_qPCR_plate_Jake_Oly_Control_RNA

 

Results:

qPCR Data File (Opticon2): Sam_20150512_105811.tad

qPCR Report (Google Spreadsheet): 20150512_qPCR_Report_Jake_Oly_Control_RNA

Excluding the no template controls (NTC), all samples produced amplification. Will require DNasing before making cDNA.

On a side note, it should be noted that the efficiencies for all of the reactions were pretty bad; probably averaging 50%. Not entirely sure why or what that indicates.

In the amplification plots below, the positive control reps are the two red lines coming up at cycle ~22.

Amplification Plots

 

 

Melt Curves