Tag Archives: RNA quantification

RNA Quantification – Ronit’s C.gigas Ploidy/Dessication RNA

Last Friday, Ronit quantified 1:10 dilutions of the RNA I isolated on 20181003 and the RNA he finished isolating on 20181011, but two of the samples (D11-C, T10-C) were still too concentrated.

I made 1:20 dilutions (1uL RNA in 19uL 0.1% DEPC-treated H2O) and quantified them using the Roberts Lab Qubit 3.0, with the RNA HS assay. Used 1uL of the diluted RNA.


RESULTS

Qubit data (Google Sheet):

Everything looks good. Added final concentration values (Qubit data x 20, to account for dilution factor) to Ronit’s master sheet (Google Sheet):

Will proceed with DNasing.

RNA Isolation – Tanner Crab Hemolymph Pellet in RNAlater using TriReagent

I previously isolated RNA from crab hemolymp from a lyophilized sample using TriReagent and Grace recently tried isolating RNA from crab hemolyph pellet (non-lyophilized) using TriReagent. The results for her extractions weren’t so great, so I’m giving it a shot with the following samples:

  • crab 424

  • crab 429

  • crab 438

Isolated RNA using TriReagent, according to manufacturer’s protocol:

Added 1mL TriReagent to each tube, vortexed to mix/dissolve solute, incubated 5mins at RT, added 200uL of chloroform, vortexed 15s to mix, incubated at RT for 5mins, centrifuged 15mins, 12,000g, 4oC, transferred aqueous phase to new tube, added 500uL isopropanol to aqueous phase, mixed, incubated at RT for 10mins, centrifuged 8mins, 12,000g, at RT, discarded supernatant, added 1mL 75% ethanol, centrifuged 5mins, 12,000g at RT, discarded supernatant and resuspended in 10uL of 0.1% DEPC-treated H2O.

Phase separation after chloroform addition was not particularly good. Aqueous phases in sample 424 was a bit cloudy (salty?) with no defined interphase. The remaining two samples did exhibit a defined interphase and were the aqueous phases were less cloudy than sample 424, but were far from ideal.

Quantified RNA using Roberts Lab Qubit 3.0 with the Qubit RNA high sensitivity kit. Used 5uL of each sample.


RESULTS

No detectable RNA in any samples. Samples were discarded.

As has been the case for all samples in this project, RNA isolation methodologies have produced wildly inconsistent results.

RNA Isolation & Quantification – Tanner crab hemolymph

We received three Tanner crab (Chionoecetes bairdi)hemolymph samples from Pam Jensen (NOAA) yesterday. From her email to Steven:

Hi Steven,
I am sending:
tube #1 crab 3859/3656: 300 ul blood + 1300 ul RNAlater​

tube #2 crab 3665/3873: 300 ul blood + 1300 ul RNAlater
​tube #3 crab 3665/3873: 200 ul blood + 1400 ul RNAlater​

The tubes hold max of 1600 ul. Will know on Sun or Mon if either crab is infected w Hematodinium.

Tracking info to follow.
Pam

Samples were stored at 4C O/N.

Here’s what the samples looked like before processing:

The samples are extremely cloudy. I’m not sure if this is expected.

Processed samples using RNAzol RT (MRC) according to the manufacturer’s protocol for Total RNA Isolation.

Pelleted samples at 5000g for 5 mins and the samples looked like this:

Decided to pellet samples for an additional 10mins. The pellet was more compact. Transferred supernatant to clean tube, since it seemed to contain “debris” (maybe cells?). Processed pellet with RNAzol RT. Brief rundown of procedure (all steps at room temp):

  1. Transferred supe to clean tube.
  2. Added 1mL RNAzol RT to pellet and mixed by repeated pipetting (solution was cloudy and slightly viscous).
  3. Added 400uL of 0.1% DEPC-treated H2O and mixed vigorously by hand.
  4. Incubated for 10mins.
  5. Centrifuged 12,000g for 15mins.

    Samples looked like this:

    This is not normal. Usually the supernatant is the clear portion, while the blue layer is below that.
  6. Transferred 750uL of the clear portion to clean 1.7mL tube.

  7. Added equal volume of isopropanol, mixed by inversion. Appeared to be a very high amount of genomic DNA precipitation visible in the tube.
  8. Incubated for 10mins.
  9. Centrifuged 12,000g, 15mins.

    Samples looked like this:

    It appears that the nucleotides (the white interphase) are suspended on a “cushion” of higher density solution, instead of pelleted at the bottom of the tube.
  10. Removed/discarded higher density solution, leaving the white layer on the bottom of the tube.

  11. Centrifuged 12,000g, 15mins.
  12. Discarded supe.
  13. Washed pellet with 75% ethanol.
  14. Centrifuged 8,000g, 3mins.
  15. Repeated Steps 12, 13, & 14, 1x.
  16. Discarded ethanol.
  17. Resuspended RNA in 50uL 0.1% DEPC-treated H2O. Pellets did not solubilize on their own. I dispersed the pellets by repeated pipetting (P200). Remaining insoluble material was pelleted (12,000g, 30s) and supernatant was transferred to a new 1.6mL tube.

RNA was quantified using the Qubit 3.0 and the Qubit HS RNA Assay. Used 5uL of each sample.

Results:

20171107_qubit_tanner_crab_hemo (Google Sheet)

Sample ID Conc. (ng/uL) Total Yield (ng)
3859/3656 0.44 22
3665/3873 1.66 83
3665/3873 2.04 102

Interestingly, both samples from the same crab had similar/decent yields.

Samples were labeled and stored at -80C in Shellfish RNA Box #6

RNA Quantification – O.lurida 1hr post-mechanical heat stress DNased RNA

DNased RNA from 07272015 was quantified using the Roberts Lab NanoDrop1000.

 

Results:

The 260/280 ratios don’t look great, but that is most likely due to the DNase treatment. The DNase that’s added to each sample isn’t actually removed, so that additional protein will skew the 260/280 ratios. Will proceed with qPCR to check for any residual gDNA in these samples.

 

DNase Treatment – O.lurida Ctenidia 1hr Post-Mechanical Stress RNA

Quantified the RNA I isolated from Jake’s samples on 20150715 and 20150710 using the Roberts Lab NanoDrop1000 (ThermoFisher).

 

 

 

Overall, the yields are good. The 260/280 ratios are mediocre. Will proceed with DNase treatment.

DNased 1.5ug of RNA from each sample using the Turbo DNA-free Kit (Ambion/Life Technologies), following the “rigorous” protocol.

Briefly:

  • 50μL reactions were carried out in 0.5mL tubes
  • added 1μL of DNase to each tube
  • incubated 30mins @ 37C
  • added additional 1μL of DNased
  • incubated 30mins @ 37C
  • added 0.2 vols (10.2μL) of DNase Inactivation Reagent
  • incubated and mixed for 2mins @ RT
  • spun 1.5mins, 10,000g @ RT
  • transferred 50μL of supe to sterile 1.5mL snap cap tubes
  • spec’d on Roberts Lab NanoDrop1000

Samples were stored @ -80C in Shellfish RNA Box #6. Will quantify at a later date.

DNase reaction calcs: 20150727_Jake_Oly_mech_stress_DNase_calcs

 

DNase Treatment – Jake’s O.lurida Ctenidia RNA (1hr Heat Shock) from 20150506

Since the O.lurida RNA I isolated on 20150506 showed residual gDNA via qPCR, I treated 1.5μg of RNA from each sample using the Turbo DNA-free Kit (Ambion/Life Technologies), following the “rigorous” protocol.

Briefly:

  • 50μL reactions were carried out in 0.5mL tubes
  • added 1μL of DNase to each tube
  • incubated 30mins @ 37C
  • added additional 1μL of DNased
  • incubated 30mins @ 37C
  • added 0.2 vols (10.2μL) of DNase Inactivation Reagent
  • incubated and mixed for 2mins @ RT
  • transferred 50μL of supe to sterile 1.5mL snap cap tubes
  • spec’d on Roberts Lab NanoDrop1000

Samples were stored @ -80C in Shellfish RNA Box #5 and Box #6.

DNase reaction calcs: 20150514_Jake_Oly_1hr_HS_DNase_calcs

 

 

Results:

Google Spreadsheet: 20150514_DNased_RNA_Jake_Oly_1hr_HS_ODs

 

 

 

 

All samples look pretty good except for HT1 8 (RNA concentration is ridiculously high!) and NT1 8 (RNA concentration is way below expected). Will check for residual gDNA via qPCR.

DNase Treatment – Jake’s O.lurida Ctenidia RNA (Controls) from 20150507

Since the O.lurida RNA I isolated on 20150507 showed residual gDNA via qPCR, I treated 5μg of RNA from each sample using the Turbo DNA-free Kit (Ambion/Life Technologies), following the “rigorous” protocol.

Briefly:

  • 50μL reactions were carried out in 0.5mL tubes
  • added 1μL of DNase to each tube
  • incubated 30mins @ 37C
  • added additional 1μL of DNased
  • incubated 30mins @ 37C
  • added 0.2 vols (10.2μL) of DNase Inactivation Reagent
  • incubated and mixed for 2mins @ RT
  • transferred 50μL of supe to sterile 1.5mL snap cap tubes
  • spec’d on Roberts Lab NanoDrop1000

Samples were stored @ -80C in Shellfish RNA Box #5 and Box #6.

DNase reaction calcs: 20150514_Jake_Oly_control_DNase_calcs

 

 

Results:

 

Google Spreadsheet: 20150514_DNased_RNA_Jake_Oly_controls_ODs

 

 

 

 

Overall, samples look fine. Will check for residual gDNA via qPCR.

RNA Isolation – Geoduck Gonad in Paraffin Histology Blocks

UPDATE 20150528: The RNA isolated in this notebook entry may have been consolidated on 20150528.

The RNA isolation I performed earlier this week proved to be better for some of the samples (scraping tissue directly from the blocks), but still exhibited low yields from some samples. I will perform a final RNA isolation attempt (the kit only has six columns left) from the following samples:

  • 02
  • 03
  • 04
  • 07
  • 08
  • 09

Instead of full sections from each histology cassette, I gouged samples directly from the tissue in each of the blocks to maximize the amount of tissue input.

IMPORTANT:

Samples were then processed with the PAXgene Tissue RNA Kit in a single group.

Isolated RNA according to the PAXgene Tissue RNA Kit protocol with the following alterations:

  • “Max speed” spins were performed at 19,000g.
  • Tissue disruption was performed with the Disruptor Genie @ 45C for 15mins.
  • Shaking incubation step was performed with Disruptor Genie
  • Samples were eluted with 40μL of Buffer TR4, incubated @ 65C for 5mins, immediately placed on ice and quantified on the Roberts Lab NanoDrop1000.

 

All samples were stored @ -80C in Shellfish RNA Box #5.

Results:

 

Two samples (02 and 07) produced great yields and perfect RNA (260/280 and 260/230 of ~2.0). The remainder of the samples showed little improvement compared to what I’ve been obtaining from the previous three attempts. Will discuss with Steven and Brent about how to proceed with this project.

RNA Isolation – Jake’s O. lurida Ctenidia Control from 20150422

Isolated RNA from Jake’s Olympia oyster ctenidia, controls, collected on 20150422. Samples had been homogenized and stored @ -80C.

The following sample tubes (heat-shocked oyster ctenidia) were removed from -80C and thawed at RT:

  •  42215 HC 1
  •  42215 HC 2
  • 42215 HC 3
  • 42215 HC 4
  • 42215 HC 5
  • 42215 HC 6
  • 42215 HC 7
  • 42215 HC 8
  • 42215 NC 1
  • 42215 NC 2
  • 42215 NC 3
  • 42215 NC 4
  • 42215 NC 5
  • 42215 NC 6
  • 42215 NC 7
  • 42215 NC 8
  • 42215 SC 1
  • 42215 SC 2
  • 42215 SC 3
  • 42215 SC 4
  • 42215 SC 5
  • 42215 SC 6
  • 42215 SC 7
  • 42215 SC 8

 

NOTE: 0.1% DEPC-H2O used throughout this procedure was prepared on 7/15/2010 by me.

 

According to Jake’s notebook entry, the samples should have been previously homogenized in RNAzol RT (Molecular Research Center; MRC). However, none of the samples showed evidence of being homogenized:

 

 

 

Procedure:

Samples were homogenized with disposable pestle in their respective tubes and vortexed.

Added 400μL of 0.1% DEPC-H2O to each sample and vortexed 15s.

Incubated samples 15mins at RT.

Centrifuged tubes 15mins at RT @ 16,000g.

750μL of the supe was transferred to a clean tube, added equal volume of isopropanol (750μL), mixed by inversion (20 times), and incubated at RT for 15mins.

Centrifuged 12,000g for 10mins.

Discarded supe.

Washed pellets with 500μL of 75% EtOH (made with 0.1% DEPC-H2O) and centrifuged 4,000g for 3mins at RT. Repeated one time.

Removed EtOH and resuspended in 100μL of 0.1% DEPC-H2O. Most samples required vortexing to dissolve pellet.

Sample tubes were transferred to ice, quantified on the Roberts Lab NanoDrop1000, and stored @ -80C in their original box, pictured:

 

 

 

 

Results:

Google Spreadsheet with absorbance data: 20150507_Jake_Oly_control_RNA_ODs

 

Excellent yields and pretty solid 260/280 ratios (>1.85). Interestingly, the 260/230 ratios aren’t so great (compared to yesterday’s isolations). I suspect that the reason for this is that there appeared to be more starting tissue in these samples than yesterday’s. The greater quantity of tissue explains the higher yields and could be tied to the decrease in the 260/230 ratios…

Anyway, things look good. Next step will be to check for gDNA carryover in these samples and yesterday’s samples.

RNA Isolation – Jake’s O. lurida Ctenidia 1hr Heat Stress from 20150422

Isolated RNA from Jake’s Olympia oyster ctenidia, 1hr heat shock, collected on 20150422. Samples had been homogenized and stored @ -80C.

The following sample tubes (heat-shocked oyster ctenidia) were removed from -80C and thawed at RT:

  • 42215 HT1 1
  • 42215 HT1 2
  • 42215 HT1 3
  • 42215 HT1 4
  • 42215 HT1 5
  • 42215 HT1 6
  • 42215 HT1 7
  • 42215 HT1 8
  • 42215 NT1 1
  • 42215 NT1 1
  • 42215 NT1 2
  • 42215 NT1 3
  • 42215 NT1 4
  • 42215 NT1 5
  • 42215 NT1 6
  • 42215 NT1 7
  • 42215 NT1 8
  • 42215 ST1 1
  • 42215 ST1 2
  • 42215 ST1 3
  • 42215 ST1 4
  • 42215 ST1 5
  • 42215 ST1 6
  • 42215 ST1 7
  • 42215 ST1 8

NOTE: Samples NT1 1 and NT1 2 only had 700μL of RNAzol RT in them. Added additional 300μL of RNAzol RT to each.

NOTE: 0.1% DEPC-H2O used throughout this procedure was prepared on 7/15/2010 by me.

According to Jake’s notebook entry, the samples should have been previously homogenized in RNAzol RT. However, none of the samples showed evidence of being homogenized:

 

In theory, if these samples were snap frozen on liquid nitrogen after being placed in the RNAzol RT, there should be almost no impact on the RNA.

 

Procedure:

Samples were homogenized with disposable pestle in their respective tubes and vortexed.

Added 400μL of 0.1% DEPC-H2O to each sample and vortexed 15s.

Incubated samples 15mins at RT.

Centrifuged tubes 15mins at RT @ 16,000g.

750μL of the supe was transferred to a clean tube, added equal volume of isopropanol (750μL), mix by inversion (20 times), and incubated at RT for 15mins.

Centrifuged 12,000g for 10mins.

Discarded supe.

Washed pellets with 500μL of 75% EtOH (made with 0.1% DEPC-H2O) and centrifuged 4,000g for 3mins at RT. Repeated one time.

Removed EtOH and resuspended in  100μL of 0.1% DEPC-H2O. Most samples required vortexing to dissolve pellet.

Sample tubes were transferred to ice, quantified on the Roberts Lab NanoDrop1000, and stored @ -80C in their original box, pictured:

 

Results:

 

Google Spreadsheet with absorbance data: 20150506_Jake_Oly_1h_HS_RNA_ODs

Overall, the samples have excellent yields. The exceptions being the two samples that had less than 1mL of RNAzol RT in them to start (their yields are actually fine, but relative to all the other samples, they aren’t great). Should I have left them that way instead of adding additional RNAzol RT? Was there something wrong with these samples in the first place and that’s why they didn’t have a full 1mL of RNAzol RT in the tube already?

The 260/280 ratios are pretty good for most of the samples (>1.8), however I’d prefer to see RNA with 260/280 ratios >1.9.

The 260/230 ratios are amazing! The best I’ve seen coming straight out of an RNA isolation in a long time.

Eventually (once I’ve isolated RNA from the control set that corresponds to these heat shock samples), I’ll check for gDNA carryover and then, probably, DNase the RNA.