Reverse Transcription – Subset of Jake’s O.lurida DNased RNA

Currently don’t have sufficient reagents to perform reverse transcription on the entire set of DNased RNA (control and 1hr.heat-shocked O.lurida ctenidia samples). To enable Jake to start testing out some of his primers while we wait for reagents to come in, Steven suggested I generate some cDNA for him to use.

Used the following DNased RNA:

  • HC1
  • NC1
  • SC1
  • HT1 1
  • NT1 1
  • ST1 1

Reverse Transcription Calcs: 20150522_Jake_Oly_cDNA_Calcs

Briefly:

  • Reactions run in 0.5mL snap cap tubes
  • 250ng of DNased RNA used in each reaction
  • Combined DNased RNA with oligo dT primers and water; incubated 70C 5mins; immediately placed on ice
  • Added 6.75μL of buffer/dNTP/enzyme master mix to each sample; incubated 42C for 1hr; 95C for 3mins

Samples will be given to Jake and stored @ -20C.

Bioinformatics – Trimmomatic/FASTQC on C.gigas Larvae OA NGS Data

Previously trimmed the first 39 bases of sequence from reads from the BS-Seq data in an attempt to improve our ability to map the reads back to the C.gigas genome. However, Mac (and Steven) noticed that the last ~10 bases of all the reads showed a steady increase in the %G, suggesting some sort of bias (maybe adaptor??):

Although I didn’t mention this previously, the figure above also shows an odd “waves” pattern that repeats in all bases except for G. Not sure what to think of that…

Quick summary of actions taken (specifics are available in Jupyter notebook below):

  • Trim first 39 bases from all reads in all raw sequencing files.
  • Trim last 10 bases from all reads in raw sequencing files
  • Concatenate the two sets of reads (400ppm and 1000ppm treatments) into single FASTQ files for Steven to work with.

Raw sequencing files:

Notebook Viewer: 20150521_Cgigas_larvae_OA_Trimmomatic_FASTQC

Jupyter (IPython) notebook: 20150521_Cgigas_larvae_OA_Trimmomatic_FASTQC.ipynb

 

 

Output files

Trimmed, concatenated FASTQ files
20150521_trimmed_2212_lane2_400ppm_GCCAAT.fastq.gz
20150521_trimmed_2212_lane2_1000ppm_CTTGTA.fastq.gz

 

FASTQC files
20150521_trimmed_2212_lane2_400ppm_GCCAAT_fastqc.html
20150521_trimmed_2212_lane2_400ppm_GCCAAT_fastqc.zip

20150521_trimmed_2212_lane2_1000ppm_CTTGTA_fastqc.html
20150521_trimmed_2212_lane2_1000ppm_CTTGTA_fastqc.zip

 

Example of FASTQC analysis pre-trim:

 

 

Example FASTQC post-trim (from 400ppm data):

 

Trimming has removed the intended bad stuff (inconsistent sequence in the first 39 bases and rise in %G in the last 10 bases). Sequences are ready for further analysis for Steven.

However, we still see the “waves” pattern with the T, A and C. Additionally, we still don’t know what caused the weird inconsistencies, nor what sequence is contained therein that might be leading to that. Will contact the sequencing facility to see if they have any insight.

qPCR – Re-run Jake’s O.lurida DNased RNA Samples NC1, SC1, SC2, SC4 from 20150514

The following DNased RNA samples showed inconsistencies between qPCR reps (one rep showed amplification, the other rep did not) on 20150514:

  • NC1
  • SC1
  • SC2
  • SC4

Reran these four samples to obtain a definitive answer as to whether or not they have residual gDNA in them prior to using them to make cDNA.

Used Oly_Actin primers (SR IDs: 1504, 1505)

Used 1μL from all templates.

All samples were run in duplicate.

Positive control was HL1 O.lurida DNA isolated by Jake on 20150323.

Cycling params:

  • 95C – 2.5mins
  • 40 cycles of:
    • 95C – 10s
    • 60C – 20s
  • Melt curve

Master mix calcs: 20150521_qPCR_Oly_DNased_RNA

Plate layout: 20150521_qPCR_plate_Jake_Oly_DNased_RNA

Results:

qPCR Data File (Opticon): Sam_20150521_145749.tad
qPCR Report (Google Sheet): 20150521_qPCR_Report_Jake_Oly_DNased_RNA

 

No amplification in any of the RNA samples, nor the NTCs. Will make cDNA.

 

Amplification Plots

 

 

Melt Curves

qPCR – Jake’s O.lurida ctenidia DNased RNA (1hr Heat Shock Samples)

Ran qPCR on DNased RNA from earlier today to assess whether there was any residual gDNA after the DNase treatment with Oly_Actin_F/R primers (SR IDs: 1505, 1504).

Used 1μL from all templates.

All samples were run in duplicate.

Positive control was HL1 O.lurida DNA isolated by Jake on 20150323.

Cycling params:

  • 95C – 2.5mins
  • 40 cycles of:
    • 95C – 10s
    • 60C – 20s
  • Melt curve

Master mix calcs are here (used same calcs from the other day): 20150512_qPCR_Oly_RNA

Plate layout: 20150514_qPCR_plate_Jake_Oly_1hr_HS_DNased_RNA

Results:

qPCR Data File (Opticon): Sam_20150514_170332.tad

qPCR Report (Google Spreadsheeet): 20150514_qPCR_Report_Jake_Oly_DNased_1hr_HS_RNA

 

Positive control samples are the only samples that produced amplification (cycle ~20). Will proceed to making cDNA.

 

Amplification Plots

 

Melt Curves

qPCR – Jake’s O.lurida ctenidia DNased RNA (Control Samples)

Ran qPCR on DNased RNA from earlier today to assess whether there was any residual gDNA after the DNase treatment with Oly_Actin_F/R primers (SR IDs: 1505, 1504).

Used 1μL from all templates.

All samples were run in duplicate.

Positive control was HL1 O.lurida DNA isolated by Jake on 20150323.

Cycling params:

  • 95C – 2.5mins
  • 40 cycles of:
    • 95C – 10s
    • 60C – 20s
  • Melt curve

Master mix calcs are here: 20150514_qPCR_Oly_DNased_RNA

qPCR Plate Layout: 20150514_qPCR_plate_Jake_Oly_Control_RNA

Results:

qPCR Data File (Opticon): Sam_20150514_153529.tad

qPCR Report (Google Spreadsheet): 20150514_qPCR_Report_Jake_Oly_DNased_Control_RNA

Positive control comes up around cycle ~21.

No amplification in the no template controls.

Four wells of the DNased RNA samples exhibit amplification (B5, C10, C12, D3), however each respective replicate does not. Will re-test these four samples (NC1, SC1, SC2, SC4).

 

Amplification Plots

 

Melt Curves

 

DNase Treatment – Jake’s O.lurida Ctenidia RNA (1hr Heat Shock) from 20150506

Since the O.lurida RNA I isolated on 20150506 showed residual gDNA via qPCR, I treated 1.5μg of RNA from each sample using the Turbo DNA-free Kit (Ambion/Life Technologies), following the “rigorous” protocol.

Briefly:

  • 50μL reactions were carried out in 0.5mL tubes
  • added 1μL of DNase to each tube
  • incubated 30mins @ 37C
  • added additional 1μL of DNased
  • incubated 30mins @ 37C
  • added 0.2 vols (10.2μL) of DNase Inactivation Reagent
  • incubated and mixed for 2mins @ RT
  • transferred 50μL of supe to sterile 1.5mL snap cap tubes
  • spec’d on Roberts Lab NanoDrop1000

Samples were stored @ -80C in Shellfish RNA Box #5 and Box #6.

DNase reaction calcs: 20150514_Jake_Oly_1hr_HS_DNase_calcs

 

 

Results:

Google Spreadsheet: 20150514_DNased_RNA_Jake_Oly_1hr_HS_ODs

 

 

 

 

All samples look pretty good except for HT1 8 (RNA concentration is ridiculously high!) and NT1 8 (RNA concentration is way below expected). Will check for residual gDNA via qPCR.

DNase Treatment – Jake’s O.lurida Ctenidia RNA (Controls) from 20150507

Since the O.lurida RNA I isolated on 20150507 showed residual gDNA via qPCR, I treated 5μg of RNA from each sample using the Turbo DNA-free Kit (Ambion/Life Technologies), following the “rigorous” protocol.

Briefly:

  • 50μL reactions were carried out in 0.5mL tubes
  • added 1μL of DNase to each tube
  • incubated 30mins @ 37C
  • added additional 1μL of DNased
  • incubated 30mins @ 37C
  • added 0.2 vols (10.2μL) of DNase Inactivation Reagent
  • incubated and mixed for 2mins @ RT
  • transferred 50μL of supe to sterile 1.5mL snap cap tubes
  • spec’d on Roberts Lab NanoDrop1000

Samples were stored @ -80C in Shellfish RNA Box #5 and Box #6.

DNase reaction calcs: 20150514_Jake_Oly_control_DNase_calcs

 

 

Results:

 

Google Spreadsheet: 20150514_DNased_RNA_Jake_Oly_controls_ODs

 

 

 

 

Overall, samples look fine. Will check for residual gDNA via qPCR.

ISO Creation – OpticonMonitor3 Disc Cloning

Since many newer computers are coming without optical disc drives (including my laptop, which I want to install this software on), I created an .iso disc image of the OpticonMonitor3 (BioRad) installation disc.

Using OS X Disk Utility:

  1. File > New Disk Image

  2. Dropdown > CD/DVD Master

This creates a Mac-specific .cdr image of the installation CD. Converted to a universal .iso disc image with the following command line:

$hdiutil makehybrid -iso -joliet -o [filename].iso [filename].cdr

Replaced [filename] with OpticonMonitor3.

Moved the newly created OpticonMonitor3.iso file to our server (Eagle/Backup/Software/Windows).

Now the .iso file should be able to be mounted and installed on any Windows computer without the need for a physical installation CD.

qPCR – Jake O.lurida ctenidia RNA (Heat Shock Samples) from 20150506

Ran qPCRs on the O.lurida total RNA I isolated on 20150506 to assess presence of gDNA carryover with Oly Actin primers (SR IDs: 1505, 1504).

Used 1μL from all templates.

All samples were run in duplicate.

Positive control was HL1 O.lurida DNA isolated by Jake on 20150323.

Master mix calcs are here: 20150512_qPCR_Oly_RNA

Cycling params:

  • 95C – 3mins
  • 40 cycles of:
    • 95C – 5s
    • 60C – 20s
  • Melt curve

 

Plate layout: 20150512_qPCR_plate_Jake_Oly_HS_RNA

Results:

qPCR Data File (Opticon2): Sam_20150512_123246.tad

qPCR Report (Google Spreadsheet):20150512_qPCR_Report_Jake_Oly_HS_RNA

Excluding the no template controls (NTC), all samples produced amplification. Will require DNasing before making cDNA.

Related to the qPCR I ran earlier today with these same primers, the efficiencies of the reactions on this plate are significantly better (i.e. normal; >80% efficiencies) than the earlier qPCR. The improved efficiency would also explain why the positive control comes up two cycles earlier on this run.

In the amplification plots below, the positive control reps are the two lines coming up at cycle ~20.

 

Amplification Plots

 

Melt Curves

qPCR – Jake O.lurida ctenidia RNA (Control Samples) From 20150507

Ran qPCRs on the O.lurida total RNA I isolated on 20150507 to assess presence of gDNA carryover with Oly Actin primers (SR IDs: 1505, 1504).

Used 1μL from all templates.

All samples were run in duplicate.

Positive control was HL1 O.lurida DNA isolated by Jake on 20150323.

Master mix calcs are here: 20150512_qPCR_Oly_RNA

Cycling params:

  • 95C – 3mins

40 cycles of:

  • 95C – 5s
  • 60C – 20s

Melt curve

 

Plate layout: 20150512_qPCR_plate_Jake_Oly_Control_RNA

 

Results:

qPCR Data File (Opticon2): Sam_20150512_105811.tad

qPCR Report (Google Spreadsheet): 20150512_qPCR_Report_Jake_Oly_Control_RNA

Excluding the no template controls (NTC), all samples produced amplification. Will require DNasing before making cDNA.

On a side note, it should be noted that the efficiencies for all of the reactions were pretty bad; probably averaging 50%. Not entirely sure why or what that indicates.

In the amplification plots below, the positive control reps are the two red lines coming up at cycle ~22.

Amplification Plots

 

 

Melt Curves